Download Suggested Solution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Problem 7.4
Determine the phase angles by which v1  t  leads i1  t  and v1  t  leads i2 t  , where
v1  t   4sin 377t  25 V
i1 t   0.05cos 377t 10 A
i2 t   0.1sin 377t  75 A
Suggested Solution
v1  t   4sin  377t  25  V
 4 cos  377t  65  V
i1 t   0.05cos 377t 10 A
i2  t   0.1sin  377t  75  A
 0.1sin  377t  105  A
 0.1cos  377t  15  A
Then,
v1  t  leads i1  t  by  65   10  55
v1  t  leads i2  t  by  65  15  80
Problem 7.5
Calculate the current in the resistor if the voltage input is:
i(t)
(a) v1(t)=10 cos(377t+180°)
(b) v2(t)=12 sin(377t+45°)
+
v(t)
_
Give the answers in both the time and frequency domains.
2
Suggested Solution
v1 (t )
 5cos(377t  180) A  5180 A
R
v (t )
(b) i(t )  2  6sin(377t  45) A  6cos(377t  45) A  6 45 A
R
(a) i(t ) 
Problem 7.6
Calculate the current in the capacitor if the voltage input is:
i(t)
(c) v1(t)=16 cos(377t – 22°)
(d) v2(t)=8 sin(377t + 64°)
+
v(t)
_
Give the answers in both the time and frequency domains.
Suggested Solution
1
1
1


j C j (377)(1326 106 ) .5 j
(a)
v(t ) 16 22
i(t ) 

 8 68 A  8cos(377t  68) A
Zc
2 90
Zc 
(b) i(t ) 
v(t ) 8 64

 4 64 A  4cos(377t  64) A
Zc
2 90
C=1326F
Problem 7.7
Calculate the current in the inductor if the voltage input is:
(e) v1(t)=24 cos(377t + 12°)
(f) v2(t)=18 sin(377t – 48°)
i(t)
+
L=10.61 mH
v(t)
_
Give the answers in both the time and frequency domains.
Suggested Solution
Z L  j L  j (377)(10.61 103 )  4 j
(a)
i(t ) 
(b) i(t ) 
v(t ) 24 12

 6 78 A
ZL
4 90
v(t ) 18 42

 4.5 48 A
ZL
4 90
Problem 7.8
Find the frequency domain impedance, Z, for the network shown.
1
j2
-j1F
z
Suggested Solution
Z=1+j2-j1=1+j1
Problem 7.10
Find the frequency domain impedance, Z, for the network shown.
z
2
j2
-j4
Suggested Solution
1 1 1
1 1
 

 
Z 2 j2 j4 2
4
4(2  j )
Z

2  j (2  j )(2 
Z  1.6  j 0.8
1 1 1
j     2  j
2 4 4
84 j

 1.6  j 0.8
j)
4 1
Problem 7.13
Find Z(j) at a frequency of 60 Hz for the network shown.
2
z
4
10mH
500F
Suggested Solution
Z L  j L  j (377)(10  103 )  j 3.77
1
106

  j 5.3
j C j 377(5)
j 3.77(4  j 5.3)
j15.08  20
Z  2
 2
 5.1  j 4.96
j 3.77  4  j 5.3
4  j1.535
Zc 
Problem 7.21
Draw the frequency domain circuit and calculate v(t) for the circuit shown if
Is(t)=20 cos(377t+120°) A.
+
is(t)
V(t)
1
100 mH
10 mF
_
Suggested Solution
Z  j L  j 37.7
Zc 
1
1


j C j 3.77


1
V I
1
1
1
 

 R Z L Z C


2 120
2 120
2 120



 0.52 44.91V
j
1

j
3.74
3.84
75.03

 1
 j 3.77

37.7
v(t )  0.52 cos(377t  44.97)V
Related documents