Download MATH 1112

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MATH 1112
FINAL EXAM REVIEW
I.
State the equation of the unit circle.
II.
If cot x  
III.
Simplify each expression.
IV.
V.
VI.
12
, find sin x for x in Quadrant II.
5
1.
 3 
sin   
 2 
2.
cos 
3.
sin150
4.
sin 660
5.
 3 
cos  

 4 
6.
cos0
7.
tan315
8.
cot 
9.
 5 
sec  

 6 
10.
csc0
Sketch the graph of each function on [0, 2 ) .
1.
y  sin x
2.
y  cos x
3.
y  tan x
4.
y  cot x
5.
y  sec x
6.
y  csc x
Simplify each expression.
1.
cos( )
2.
sin( )
3.
tan(  )
4.
sec(  )
2.

3
cos 1  

 2 
Evaluate each expression.
1.

2
arc sin  

 2 
3.
VII.
VIII.
IX.
X.

 3 
sec  cot 1    
 4 

4.
tan 1  1
Sketch at least one cycle of the graph of each function.
1.
y  3sin 2 x
2.
y  2cos  x     3
3.


y  tan  x  
3

4.
y  cot  2 x   
5.
y  2sec3x
Use the sum or difference identities to evaluate each expression.
1.
cos 75
3.
tan195
Let α be in Quadrant I, β in Quadrant III, cos  
1.
cos      ?
2.
sin      ?
3.
tan      ?
Change each sum or difference to a product.
1.
sin 68  sin32
2.
sin5x  sin3x
3.
cos12x  cos5x
4.
cos 20  cos 40
2.
sin 285
7
5
, and tan   .
25
12
XI.
XII.
XIII.
Let θ be in Quadrant II with sec   
1.
sin 2  ?
3.
tan 2  ?
13
.
5
2.
cos 2  ?
Evaluate each of the following expressions using the half-angle identities.
1.
sin112.5
3.
tan 67.5
2.
cos157.5
If the terminal side of θ passes through the point (-3,2), find sin 2 .
XIV. Solve each equation for 0  x  2 .
1.
cos 2x  1  sin x
2.
sin x cos x 
3.
2 cos 2 x  sin x  1  0
4.
3cot 2 2 x  1  0
1
2
XV. Solve ABC for the missing part.
1.
A  90, a  29, b  21, B  ?
2.
a  5, b  8, c  10, C  ?
3.
A  40, b  6, B  20, c  ?
XVI. Give the radian measure of an angle that subtends an arc of length 24 in a circle
of radius 8 .
XVII. Convert
5
to degrees.
12
XVIII. Convert 260 to radians.
XIX. Prove the following identities.
1.
sin  sec  tan 
2.
sec2  tan 2   sec2   sec 4 
3.
csc   sec 
 cot   tan 
sin   cos 
4.
 sin x  cos x 
2
 1  sin 2 x
XX. Simplify each expression.
1.
sec4 x  tan 4 x
sec2 x  tan 2 x
2.
cos  sin 

sin  cos 
3.
tan 
1  cos 2 
XXI. Change the product to a sum.
1.
6sin15 sin 45
2.
4sin3x cos 2x
 3 4
XXII. Let the point   ,  be a point on the terminal side of an angle θ in standard
 5 5
position. Find the sine and cosine of θ.
XXIII. If tan   0 and cos  0 , in what quadrant is θ?
XXIV. Give the reference angle for the indicated angle.
1.
211
3.
2.3
2.
5
9
2.
278
XXV. Find the quadrant in which the indicated angle lies.
1.
343
12
3.
5.43
4.

213
5
XXVI. Name one positive and one negative angle that is coterminal with the given angle.
1.
43
2.
13
12
ANSWERS:
I.
x2  y 2  1
II.
5
13
III.
1.
1
2.
-1
3.
1
2
4.

5.

6.
1
7.
-1
8.
Undefined
9.

10.
Undefined
IV.
1.
2.
2
2
2 3
3
3
2
3.
4.
5.
6.
V.
VI.
VII.
1.
cos
2.
 sin 
3.
 tan 
4.
sec
1.

2.
5
6
3.

4.

1.

4
5
3
2.

4
3.
4.
5.
VIII.
3.
IX.
X.
XI.
XII.
6 2
4
1.
1.
 3 3
 32
3 3
204

325
2.
 6 2
4
2.

323
325
323
36
3.

1.
2sin50 cos18
2.
2cos 4x sin x
3.
2 cos
17 x
7x
cos
2
2
4.
sin10
1.

2.

3.
120
119
2.

1.
120
169
2 2
2
119
169
2 2
2
2 2
2 2
3.
XIII.

12
13
XIV. 1.
2.
3.
4.
XV. 1.
3.
0,

6
, ,
5
6
 5
4
,
4
 7 11
2
,
6
,
6
  2 5 7 4 5 11
, ,
,
,
,
,
,
6 3 3 6 6 3 3 6
46.4
2.
97.9
2.
csc sec
15.2
XVI. 3
XVII. 75
XVIII.
13
9
XX. 1.
1
3.
csc sec
XXI. 1.
3 3 3
 
2
2
2.
2sin5x  2sin x
4
3
XXII. sin   , cos   
5
5
XXIII. IV
XXIV. 1.
3.
XXV. 1.
3.
2.
4
9
II
2.
I
IV
4.
III
31
.84
XXVI. *Answers may vary. I have given a couple of responses only.
1.
317, 403
2.
37 11
,
12
12
Related documents