Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Department of Economics ECONOMETRICS I Fall 2007 – Tuesday, Thursday, 1:00 – 2:20 Professor William Greene Phone: 212.998.0876 Office: KMC 7-78 Home page:ww.stern.nyu.edu/~wgreene Office Hours: Open Email: [email protected] URL for course web page: www.stern.nyu.edu/~wgreene/Econometrics/Econometrics.htm Assignment 5 Hypothesis Tests and Prediction 1. The following exercises use the gasoline data which we have used at various points before. All variables in all regressions discussed below are assumed to be logarithms. As such, in the results to follow, all estimated coefficients are estimates of elasticities. In the following, g = log(100000*GasQ/Pop), Pg = log(GasP), y=log(PCIncome), etc. a. The correlation of g and pg is positive. In the regression of g on a constant term, pg and y, the slope on pg is negative. Obtain the empirical values of these two coefficients, then reconcile the numerical results (i.e., explain how this result arises). +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:33:16PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 3 | | Degrees of freedom = 49 | | Residuals Sum of squares = .1768978 | | Standard error of e = .6008459E-01 | | Fit R-squared = .9390175 | | Adjusted R-squared = .9365284 | | Model test F[ 2, 49] (prob) = 377.25 (.0000) | | Diagnostic Log likelihood = 73.98430 | | Restricted(b=0) = 1.257919 | | Chi-sq [ 2] (prob) = 145.45 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -5.567914 | | Akaike Info. Criter. = -5.568042 | | Autocorrel Durbin-Watson Stat. = .0875278 | | Rho = cor[e,e(-1)] = .9562361 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -5.42315723 .58200599 -9.318 .0000 PG -.17124062 .03788798 -4.520 .0000 3.72930296 Y .96864830 .07376161 13.132 .0000 9.67487347 This is an application of the “left out variable” result. The partial correlation between logG and logPG is negative when logY is included in the equation. b. Consider a nonlinear regression model of the form g = 1 + 2pg + 3y + 4y2 +. Use linear least squares to estimate the coefficients of the model. The marginal effect of y on E[g|pg,y] is E[g| pg,y]/y = 3 + 24y, which depends on y. Form a confidence interval for this marginal effect at income = PCIncome = $27,208 (log = 10.2113, the 2004 value). [Note, the estimate is of the form w1b3 + w2b4 where w1=1 and w2=log(40).] You will need to estimate the variance of this statistic using your regression results. (If you are using LIMDEP, include ;PRINTVC in your regression command to display the matrix you need. You can access this matrix from the project window in the Matrices list – it is VARB. If you are using some other program, use whatever command you need to display the covariance matrix for your regression coefficient estimates.) +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:34:01PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 4 | | Degrees of freedom = 48 | | Residuals Sum of squares = .4212751E-01 | | Standard error of e = .2962527E-01 | | Fit R-squared = .9854773 | | Adjusted R-squared = .9845696 | | Model test F[ 3, 48] (prob) =1085.72 (.0000) | | Diagnostic Log likelihood = 111.2909 | | Restricted(b=0) = 1.257919 | | Chi-sq [ 3] (prob) = 220.07 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -6.964147 | | Akaike Info. Criter. = -6.964452 | | Autocorrel Durbin-Watson Stat. = .2957574 | | Rho = cor[e,e(-1)] = .8521213 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -51.7745363 3.75147646 -13.801 .0000 PG -.12775157 .01900782 -6.721 .0000 3.72930296 Y 10.6526137 .78232692 13.617 .0000 9.67487347 Y2 -.50683621 .04090090 -12.392 .0000 93.7224759 Matrix Cov.Mat. has 4 rows and 4 columns. 1 2 3 4 +-------------------------------------------------------1| 14.07358 -.00822 -2.93352 .15299 2| -.00822 .00036 .00210 -.00014 3| -2.93352 .00210 .61204 -.03196 4| .15299 -.00014 -.03196 .00167 --> --> --> --> --> --> calc;y2004=10.2113$ calc;me=b(3)+2*b(4)*y2004 $ calc;twoY=2*y2004$ matr;gme=[0,0,1,twoy]$ matr;vme=gme*varb*gme'$ calc;list;sdme=sqr(vme);lower=me-1.96*sdme;upper=me+1.96*sdme$ SDME = .64957406920785750D-01 LOWER = .17438393601108600D+00 UPPER = .42901697114056610D+00 c. Use an F test to test the hypothesis that the three macroeconomic price indexes, PN, PD, PS (remember to take logs) do not have a significant influence on g. --> crea;lpd=log(pd);lpn=log(pn);lps=log(ps)$ --> regr;lhs=g;rhs=one,pg,y$ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:40:10PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 3 | | Degrees of freedom = 49 | | Residuals Sum of squares = .1768978 | | Standard error of e = .6008459E-01 | | Fit R-squared = .9390175 | | Adjusted R-squared = .9365284 | | Model test F[ 2, 49] (prob) = 377.25 (.0000) | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -5.42315723 .58200599 -9.318 .0000 PG -.17124062 .03788798 -4.520 .0000 3.72930296 Y .96864830 .07376161 13.132 .0000 9.67487347 --> calc;ss0=sumsqdev$ --> regr;lhs=g;rhs=one,pg,y,lpn,lpd,lps$ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:40:10PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 6 | | Degrees of freedom = 46 | | Residuals Sum of squares = .6931595E-01 | | Standard error of e = .3881840E-01 | | Fit R-squared = .9761045 | | Adjusted R-squared = .9735072 | | Model test F[ 5, 46] (prob) = 375.81 (.0000) | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -11.5868243 .86301823 -13.426 .0000 PG -.00010939 .06072810 -.002 .9986 3.72930296 Y 1.66842867 .09644870 17.299 .0000 9.67487347 LPN -.14775813 .25408578 -.582 .5637 4.23689080 LPD .38989123 .10278846 3.793 .0004 4.23906603 LPS -.54403942 .14749686 -3.688 .0006 4.17535768 --> calc;ss1=sumsqdev$ --> calc;list;f=((ss0-ss1)/2)/(ss1/(n-6))$ F = .35697146682999960D+02 This F value is statistically significant at any level. The null hypothesis would be rejected. d. Use an F test to test the hypothesis that the coefficient on the log of the price of gasoline changed in 1974 while all other coefficients in the model were unchanged. Retain the three macroeconomic price indices in your equation. --> calc;ss1=sumsqdev$ --> calc;list;f=((ss0-ss1)/2)/(ss1/(n-6))$ F = .35697146682999960D+02 --> crea;post73 = (year > 1973) ; pgpost=pg*post73$ --> regr;lhs=g;rhs=one,pg,y,lpn,lpd,lps,pgpost $ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:44:41PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 7 | | Degrees of freedom = 45 | | Residuals Sum of squares = .6492501E-01 | | Standard error of e = .3798392E-01 | | Fit R-squared = .9776182 | | Adjusted R-squared = .9746340 | | Model test F[ 6, 45] (prob) = 327.59 (.0000) | | Diagnostic Log likelihood = 100.0451 | | Restricted(b=0) = 1.257919 | | Chi-sq [ 6] (prob) = 197.57 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -6.414891 | | Akaike Info. Criter. = -6.416535 | | Autocorrel Durbin-Watson Stat. = .4675473 | | Rho = cor[e,e(-1)] = .7662264 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -10.4420717 1.06944563 -9.764 .0000 PG -.01819773 .06032044 -.302 .7643 3.72930296 Y 1.60143627 .10188899 15.717 .0000 9.67487347 LPN -.46157859 .30687690 -1.504 .1395 4.23689080 LPD .33622707 .10517773 3.197 .0025 4.23906603 LPS -.28821546 .20575297 -1.401 .1681 4.17535768 PGPOST .02365052 .01355694 1.745 .0879 2.52846745 --> calc;ss2=sumsqdev ;list;fpost=((ss1-ss2)/1)/(ss2/(n-7))$ FPOST = .30433917587987170D+01 The F is not significant – the P value is .0879. statistic in the regression results. e. Note that F is the square of the t Continuing part d, test the hypothesis that the entire model shifted in 1974, i.e., that entirely different regression models applied before 1974 and from 1974 onward. Use a Chow test. --> Sample ; 1 - 52 $ --> regr;lhs=g;rhs=one,pg,y,lpn,lpd,lps$ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:49:35PM | | LHS=G Mean = 3.309784 | | Standard deviation = .2384918 | | WTS=none Number of observs. = 52 | | Model size Parameters = 6 | | Degrees of freedom = 46 | | Residuals Sum of squares = .6931595E-01 | | Standard error of e = .3881840E-01 | | Fit R-squared = .9761045 | | Adjusted R-squared = .9735072 | | Model test F[ 5, 46] (prob) = 375.81 (.0000) | | Diagnostic Log likelihood = 98.34362 | | Restricted(b=0) = 1.257919 | | Chi-sq [ 5] (prob) = 194.17 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -6.388522 | | Akaike Info. Criter. = -6.389555 | | Autocorrel Durbin-Watson Stat. = .4511786 | | Rho = cor[e,e(-1)] = .7744107 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -11.5868243 .86301823 -13.426 .0000 PG -.00010939 .06072810 -.002 .9986 3.72930296 Y 1.66842867 .09644870 17.299 .0000 9.67487347 LPN -.14775813 .25408578 -.582 .5637 4.23689080 LPD .38989123 .10278846 3.793 .0004 4.23906603 LPS -.54403942 .14749686 -3.688 .0006 4.17535768 --> Calc ; ss_all=sumsqdev$ --> Reje ; post73 = 0 $ --> regr;lhs=g;rhs=one,pg,y,lpn,lpd,lps$ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:49:36PM | | LHS=G Mean = 3.469481 | | Standard deviation = .7095988E-01 | | WTS=none Number of observs. = 31 | | Model size Parameters = 6 | | Degrees of freedom = 25 | | Residuals Sum of squares = .5248486E-02 | | Standard error of e = .1448929E-01 | | Fit R-squared = .9652554 | | Adjusted R-squared = .9583065 | | Model test F[ 5, 25] (prob) = 138.91 (.0000) | | Diagnostic Log likelihood = 90.61185 | | Restricted(b=0) = 38.53601 | | Chi-sq [ 5] (prob) = 104.15 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -8.291761 | | Akaike Info. Criter. = -8.296706 | | Autocorrel Durbin-Watson Stat. = .9925038 | | Rho = cor[e,e(-1)] = .5037481 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -3.68022774 1.28954452 -2.854 .0086 PG -.16037492 .03091908 -5.187 .0000 4.24130024 Y .75407900 .13320588 5.661 .0000 9.92138226 LPN .40440099 .19940977 2.028 .0533 4.70939062 LPD .01238540 .06367906 .194 .8474 4.61615756 LPS -.33722011 .15797771 -2.135 .0428 4.78397912 --> Calc ; ss_pre=sumsqdev$ --> Include;new;post73=1$ --> regr;lhs=g;rhs=one,pg,y,lpn,lpd,lps$ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 03:49:36PM | | LHS=G Mean = 3.469481 | | Standard deviation = .7095988E-01 | | WTS=none Number of observs. = 31 | | Model size Parameters = 6 | | Degrees of freedom = 25 | | Residuals Sum of squares = .5248486E-02 | | Standard error of e = .1448929E-01 | | Fit R-squared = .9652554 | | Adjusted R-squared = .9583065 | | Model test F[ 5, 25] (prob) = 138.91 (.0000) | | Diagnostic Log likelihood = 90.61185 | | Restricted(b=0) = 38.53601 | | Chi-sq [ 5] (prob) = 104.15 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -8.291761 | | Akaike Info. Criter. = -8.296706 | | Autocorrel Durbin-Watson Stat. = .9925038 | | Rho = cor[e,e(-1)] = .5037481 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -3.68022774 1.28954452 -2.854 .0086 PG -.16037492 .03091908 -5.187 .0000 4.24130024 Y .75407900 .13320588 5.661 .0000 9.92138226 LPN .40440099 .19940977 2.028 .0533 4.70939062 LPD .01238540 .06367906 .194 .8474 4.61615756 LPS -.33722011 .15797771 -2.135 .0428 4.78397912 --> Calc ; ss_post=sumsqdev$ --> Calc;list ;F = ((ss_all - (ss_pre + ss_post))/6) / ((ss_pre + ss_post)/(n-12)) $ F = .17744175824374870D+02 The F statistic is quite large. The hypothesis that the parameters are unchanged should be rejected. 2. Using the model from part 1, reestimate the regression model using the 1953-2003 data (leaving out 2004). Then, use your estimated model to predict the 2004 value of GasQ (not log 100000*logGasQ/Pop). How well did you do? Explain all your calculations, and show the computations in detail. --> Sample ; 1 - 51 $ --> Regress; Lhs = g ; Rhs = one,pg,y,lpn,lpd,lps $ +----------------------------------------------------+ | Ordinary least squares regression | | Model was estimated Dec 09, 2005 at 04:18:42PM | | LHS=G Mean = 3.304901 | | Standard deviation = .2382243 | | WTS=none Number of observs. = 51 | | Model size Parameters = 6 | | Degrees of freedom = 45 | | Residuals Sum of squares = .6701323E-01 | | Standard error of e = .3858993E-01 | | Fit R-squared = .9763833 | | Adjusted R-squared = .9737593 | | Model test F[ 5, 45] (prob) = 372.09 (.0000) | | Diagnostic Log likelihood = 96.81875 | | Restricted(b=0) = 1.300784 | | Chi-sq [ 5] (prob) = 191.04 (.0000) | | Info criter. LogAmemiya Prd. Crt. = -6.398302 | | Akaike Info. Criter. = -6.399397 | | Autocorrel Durbin-Watson Stat. = .4489208 | | Rho = cor[e,e(-1)] = .7755396 | +----------------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ Constant -11.2451640 .90086087 -12.483 .0000 PG .02074016 .06265577 .331 .7422 3.70792688 Y 1.64092503 .09839906 16.676 .0000 9.66435597 LPN -.15241924 .25261814 -.603 .5493 4.21901304 LPD .31345469 .11924714 2.629 .0117 4.22918122 LPS -.49814728 .15120189 -3.295 .0019 4.15122205 --> Sample ; 52 $ --> calc;list;pop2004=293951$ POP2004 = .29395100000000000D+06 --> Namelist ; x = one,pg,y,lpn,lpd,lps $ --> matrix ; mx=x ;mx=mx'$ --> Calc ; PredLG = mx'b ;list; PredG=exp(PredLG)*pop2004/100000$ PREDG = .10971197968321570D+03 Actual value is 103.245. 109.712 is too large by 6.26%