Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MAT 117 Practice 8 1) Write log 5M = x – 3 in exponential form. 2) Write 5t= V in logarithmic form. 3) Evaluate the following (Find EXACT ANSWERS, not calculator approximations.) 1 a) log 3 81 b) log 1000 c) log 4 d) log(. 001) e) log a 3 a 7 16 5 h) log 16 128 i) log 27 3 j) log 3 9 k) log 4 (16) f) ln e 6 g) e ln 45 4) Given f(x) = log 2 ( x 2 4 x 5) , Find the domain (interval notation) 5) Solve for x. log 4 (2x 3) 3 6) Solve for x. log x2 81 4 7) Solve for x. log 3 ( x 2 x 21) 2 Write each of the following in terms of logarithms of x, y, and z, with no product, quotient, or exponent inside any logarithm. x 3 w2 x3 x 8) log 5 9) ln 4 3 ( x 2) 5 y z Write the following as a single logarithm. 10) 2 log 2 3 3 log 2 y 4 log 2 x 11) 4 log( x 1) 5 log x log( x 1) 12) Use your calculator to estimate the following to 3 decimal places. a) log 400 b) ln 56 c) log 5 35 d) log 14 7 13) What would you type into your calculator (exactly as it would show on the screen ) to graph the function f(x) = log 5 ( x 2 7) ? 14) Solve for x. Find the exact values. a) e3x = 100 b) 43x = 32x+2 c) 43x – 23 = 211 d) 5x+3 = 42x + 3 15) Find the exact value of all solutions to the equation e2x – 3ex – 40 = 0. (No decimals or calculator approximations.) 16) Find the exact values of all solutions to the following equations. a) lnx = 4 b) log(3x – 5) + log(x +5) = 2 c) log 3 (5x 3) log 3 ( x 3) 2 d) log 4 x log 2 ( x 4) 2 e) log 2 3 5x log 2 (1 x) 4 (hint for d – use the change of base formula on log4x to switch to base 2) 17) Use your graphing calculator to find all solutions to the equation x2 – 6x + 9 = Round to 4 decimal places. (Write “No Solution” if there are no solutions) 4e– x Solutions to Practice 8 (revision 0) 3 7 7 1 2 c) -2 d) -3 e) f) 6 g) 45 h) i) j) 2 3 4 3 5 67 k) undefined 4) (,1) (5, ) 5) 6) 5 7) -6, 5 8) 3logx + 2logw – 5logy – logz 2 9x4 ( x 1) 4 ( x 1) 7 5 9) ln x ln( x 2) 10) log 2 3 11) log 12a) 2.602 b) 4.025 8 12 x5 y c) 2.209 d) .737 13) ln(x2 – 7) / ln(5) (or log(x2 – 7) / log(5) ) 14a) 1.535 b) 10 1) 5x – 3 = M c) 1.312 17) -1.7153, 2) log5V = t 3a) 4 b) 125 ln 3 ln 5 3 ln 4 64 d) or 2 ln 4 ln 5 16 ln 5 2.3966, 3.3707 15) ln8 16a) e4 b) 5 c) 6 d) 4 e) -1