Download Ch 19 Circulation Physiology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Ch 19 Circulation Physiology
Vascular system
•
•
blood vessels
function :
• move blood
• exchange
nutrients
wastes
gases
H2O
blood vessels
•
•
•
•
arteries
move blood away from heart
veins
move blood toward heart
capillaries
exchange
artery - arteriole - capillaries - venule - vein
blood vessel tissues
•
endothelium
•
smooth muscle
–
–
thin, smooth inner lining
exchange
control blood flow
vasoconstriction
vasodilation
•
elastic tissue
control blood pressure
stretch and recoil
•
fibrous tissue
strength
physics of Blood Flow
•
blood flow
•
blood pressure BP
•
–
–
force of blood against the vessel wall
R
viscosity V
V
R
blood vessel length
l
R
blood vessel diameter
d
R
•
blood flow
•
main factors
pressure
diameter *
 BP
 blood flow
 diameter
 blood flow
•
•
–
–
mm Hg
BP difference moves blood (nature wants equil.)
resistance
–
–
–
volume blood / time
ml / min
F=
ΔP/R
Δ Pr4(π) / nL(8)
vasoconstrict
 blood flow
vasodilate
 blood flow
Blood Pressure
•
•
•
•
•
fluid pressure = force exerted by the pump
blood pressure = force exerted by heart
systolic BP
force from left ventricle (systole)
blood pushes blood
120+ mm Hg
diastolic BP force of elastic walls (recoil)
artery wall squeezes blood
80 mm Hg
pulse pressure
systolic BP - diastolic BP
120 - 80 = 40 mmHg
MAP
•
•
•
mean arterial pressure
–
ave. BP in a vessel
MAP = diastolic BP + (pulse press / 3)
80
(40 / 3)
= 93 mmHg
or, (2x diastolic BP + systolic BP)/3
due to: BP varies with stretch and recoil of elastic arteries
arterioles have little elasticity
–
systolic BP = diastolic BP
no Pulse Pressure
BP drops
•
•
•
BP drops throughout the circuit
capillary BP
–
–
enter
35 mmHg
exit
15 mmHg
venous BP
–
20 to 0 mmHg
venous BP
•
•
rarely varies
venous return
–
–
–
to R atrium
blood pressure
respiratory pump
inhaling
• decreases pressure in thoracic cavity
– vacuum
• increase pressure abdominal cavity
– squeezes abdominal veins
skeletal muscle pump
• muscles compress veins
• squeeze blood forward
• valves prevent backflow
maintanence of BP
•
•
cardiac output
–
–
CO = SV x HR
 CO
 BP
 SV and/or HR
 BP
peripheral resistance
–
–
vasoconstriction
 BP
 viscosity
 BP
• polycythemia, anemia
•
•
blood volume
–
–
 volume
 BP
eg. osmolarity, blood loss
these compensate for each other to maintain optimum BP
regulation of BP
•
•
•
•
receptors
–
–
baroreceptors
chemoreceptors
neural control
–
–
medulla and ANS
higher brain centers
chemical control
renal control
neural control of BP
•
•
•
control peripheral resistance
alters blood distribution to organs
medulla
–
–
•
arterioles
vasomotor centers
 BP
 BP
 vasomotor center
 S-ANS
vasodilation
 vasomotor center
 S-ANS
vasoconstriction
vasomotor tone
constant, moderate vasoconstriction
vasomotor fibers
•
•
•
•
S-ANS
to smooth muscle of blood vessels
S-ANS to vessels in skin and organs
–
norepinephrine
vasoconstrict
S-ANS to vessels to skeletal muscle
–
acetylcholine
vasodilate
exercise - increase blood to skeletal muscles
w/o increase BP
BP reflex arc
•
•
•
•
•
receptor
baroreceptors
sensory neuron
to medulla
integration
medulla – vasomotor center
motor neuron
S-ANS
effector
blood vessel smooth muscle
receptors
•
•
baroreceptors
–
–
–
–
pressure receptor
carotid sinus ; aortic arch
stretch
stim by  BP
inhibits vasomotor center
 S- ANS
 BP
chemoreceptors
carotid body ; aortic body
–
stim by
–
stim vasomotor center
 oxygen
 CO2 or  pH
 BP and speed blood flow
higher brain centers
•
•
•
hypothalamus
limbic system
cerebral cortex
hormonal control
•
•
•
•
•
•
epinephrine
 BP
 CO
some vasoconstriction
norepinephrine
 BP
vasoconstriction
ADH
 BP
 H2O reabsorption
aldosterone
 BP
 Na reabsorption
atrial natriuretic peptide  BP
renin-angiotensin
 Na excretion
vasodilation
 BP
vasoconstriction
 aldosterone, ADH
other chemical control
•
•
•
•
•
from blood vessel wall
–
–
–
local effects
endothelin
vasoconstriction (Ca entry)
prostaglandin
vasoconstricion
nitric oxide
major vasodilator
• stim by
acetylcholine, kinins, nitroglycerine
histamine
vasodilate
inflammation
bradykinins
vasodilate
inflammation
alcohol
vasodilate
inhibit ADH
nicotine
vasoconstrict
mimics NE
renal control
•
•
•
•
•
•
alter blood volume to change BP
more long term
vs altering resistance
maintains blood volume (~ 5 L) and BP
by altering amount of urine
–
–
 urine -  blood volume
 urine -  blood volume
 bl volume ( BP) -  urine -  blood volume
 bl volume ( BP) -  urine -  blood volume
measuring BP
•
•
•
•
•
sphygmomanometer
stethoscope
auscultation
sounds of Korotkoff
–
not heard when
blood flows freely
no blood flows
systolic pressure
1st sounds heard
diastolic pressure
sounds stop
hypotension
•
•
•
below 100 / 60
orthostatic hypotension
chronic hypotension
–
–
–
age
decreased viscosisty
Addison’s
decreased aldosterone
hypothyroid
hypertension
•
•
•
•
above 140 / 90
normal
fever , exercise , emotion
primary (essential) hypertension
–
contributing factors
–
TX:
no cause
diet , weight , age
heredity , smoking , stress
diuretics
beta blockers
Ca channel blockers
ACE inhibitors
secondary hypertension
–
–
–
other disorders
kidney
Cushing’s
Grave’s
Blood flow
•
•
tissue perfusion
flow of blood through an organ
goals of blood flow :
–
–
move blood
exchange
• exchange at tissue cells
– gases
– nutrient , wastes
• gas exchange at lung
• nutrient absorption from digestive tract
• blood filtering in kidney
velocity of blood flow
•
•
•
slows as increase cross-sectional area
aorta – smallest area
fastest
capillaries
–
–
–
greatest area
slowest
WHY?
local regulation of blood flow
•
•
•
BP controlled systemically
blood flow to each organ controlled locally
= autoregulation
•
varying resistance (diameter) of local arterioles
•
metabolic
due to chemical changes
•
myogenic
due to stretch of smooth muscle
metabolic autoregulation
•
•
•
vasodilation of arterioles leading into capillaries
metabolic changes
–
–
–
–
decreased O2 (hypoxia)
nitric oxide
H+ (low pH)
lactic acid
inflammatory chemicals
–
–
histamine
kinins
myogenic autoregulation
•
•
•
•
maintains local perfusion
stretch smooth muscle causes increased tone
 local BP (stretch) causes local vasoconstriction
 local BP (stretch) causes local vasodilation
•
reactive hyperemia
•
angiogenesis
–
–
increased blood flow to area of occlusion
increased blood vessels if long term hypoxia
capillaries
•
•
capillary beds
=
precapillary sphincters
–
–
network of capillaries
smooth muscle
at root of each capillary
regulate flow into each capillary
local control
• increase flow if increase needs of tissues
capillary permeability
•
•
•
•
•
•
•
holes
–
–
clefts
spaces between cells of capillary
fenestrations
pores in cell walls of capillary
diffusion
O2 , CO2 , lipids
filtration
fluid forced through holes
capillary dynamics
hydrostatic pressure
–
=
fluid pressure against a wall
= capillary Blood Pressure
HPc capillary hydrostatic pressure
HPif interstitial fluid hydrostatic pressure
~0
net force of fluid out of capillary = HP c – HPif = HPc
–
–
arterial end
35 mmHg
venous end
15 mmHg
capillary dynamics 2
•
•
•
•
•
colloid osmotic pressure
=
plasma proteins (albumin) in blood
pull of water into blood
=
concentration gradient
water follows particles
OP = 25 mmHg
=
osmosis
colloids
capillary dynamics 3
•
•
•
•
•
net fluid pressure NFP
NFP = HP – OP
net flow = pressure out – pressure in
HP – OP =
arterial end:
venous end
10 mmHg
fluid out
-8 mmHg
fluid in
HP – OP =
blood flow to skeletal muscle
•
•
•
exercise hyperemia
vasodilation
autoregulation
–
vasodilation due to low O2
systemic vasoconstriction
–
maintain BP and blood flow
blood flow to skin
•
•
•
temperature regulation
hot
increase blood flow
–
hypothalamus
decreased vasomotor stimulation
relax smooth muscle
vasodilation
–
local
release nitric oxide = vasodilation
cold
decrease blood flow
blood flow to brain
•
•
•
•
•
•
requires constant blood flow
–
750 ml / min
high nutrient needs
low pH ; high CO2
vasodilation ; increase flow
low O2
vasodilation
high CO2 (hyperventilate)
depress brain activity
lose control of flow
 BP
vasodilate – to maintain flow
 BP
vasoconstrict – to prevent rupture
blood flow to lungs
•
•
low pressure circuit
24 / 8
autoregulation reversed
–
–
low O2
vasoconstrict
high O2
vasodilate
blood flow to heart
•
•
•
•
coronary arteries
flow to myocardium during diastole only
low O2
vasodilation
exercise
vasodilation