Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 20 Recursion Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 1 Recursion The idea of calling one function from another immediately suggests the possibility of a function calling itself. The function-call mechanism in Java supports this possibility, which is known as recursion. Recursion is a powerful general-purpose programming technique, and is the key to numerous critically important computational applications, ranging from combinatorial search and sorting methods methods that provide basic support for information processing Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 2 Suppose you want to find all the files under a directory that contains a particular word. How do you solve this problem? There are several ways to solve this problem. An intuitive solution is to use recursion by searching the files in the subdirectories recursively. Your first recursive program. The HelloWorld for recursion is to implement the factorial function, which is defined for positive integers N by the equation public static int factorial(int N) { if (N == 1) return 1; return N * factorial(N-1); } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 3 // Find the GCD of two integers import java.util.Scanner; public class FindGCDInRecursion { public static void main (String args[]) { Scanner input = new Scanner(System.in); GCD using Recursion. // Enter the first number System.out.print("Enter the first number: "); int m = input.nextInt(); // Enter the second number System.out.print("Enter the second number: "); int n = input.nextInt(); System.out.println("The GCD of " + m + " and " + n + " is " + gcd(m, n)); } } ----jGRASP exec: java FindGCDInRecursion public static int gcd(int m, int n) { if (m % n == 0) return n; else return gcd(n, m % n); } Enter the first number: 45 Enter the second number: 33 The GCD of 45 and 33 is 3 ----jGRASP: operation complete. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 4 Motivations The Eight Queens puzzle is to place eight queens on a chessboard such that no two queens are on the same row, same column, or same diagonal, as shown in Figure 20.1. How do you write a program to solve this problem? A good approach to solve this problem is to use recursion. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 5 import java.awt.*; import javax.swing.*; // Create a maze public class Exercise21_36 extends JApplet { public static int SIZE = 8; private int queens[] = new int[SIZE]; private JPanel solutionPanel = new JPanel(); private int count = 0; public static void main(String[] args) { JFrame frame = new JFrame("Exercise20_37"); Exercise20_37 applet = new Exercise20_37(); frame.add(applet, BorderLayout.CENTER); applet.init(); applet.start(); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setSize(400, 400); frame.setLocationRelativeTo(null); // Center the frame frame.setVisible(true); } public Exercise20_37() { this.setLayout(new BorderLayout()); add(new JScrollPane(solutionPanel), BorderLayout.CENTER); search(0); } private void search(int row) { for (int column = 0; column < SIZE; column++) { queens[row] = column; if (isValid(row, column)) if (row < SIZE - 1) search(row + 1); else { count++; solutionPanel.add(new ChessBoardWithLabel("Solution " + count, queens)); } } } public boolean isValid(int row, int column) { for (int i = 1; i <= row; i++) if (queens[row - i] == column // Check column || queens[row - i] == column - i // diagonal to upper left || queens[row - i] == column + i) // diagonal to upper right return false; return true; } private class ChessBoardWithLabel extends JPanel { private JLabel jlblCount = new JLabel("", JLabel.CENTER); private int[] queens; private Image queenImage = new ImageIcon("image/queen.jpg").getImage(); public ChessBoardWithLabel(String count, int[] queens) { this.setBorder(BorderFactory.createLineBorder(Color.BLACK, 2)); this.queens = queens.clone(); setLayout(new BorderLayout()); jlblCount.setText(count); add(jlblCount, BorderLayout.NORTH); add(new ChessBoard(), BorderLayout.CENTER); } private class ChessBoard extends JPanel { ChessBoard() { this.setBackground(Color.WHITE); this.setBorder(BorderFactory.createLineBorder(Color.BLACK, 2)); } protected void paintComponent(Graphics g) { //g.clearRect(0, 0, getWidth(), getHeight()); // g.setColor(Color.WHITE); // g.fillRect(0, 0, getWidth(), getHeight()); g.setColor(Color.BLACK); // Add the Queen image for (int i = 0; i < SIZE; i++) { int j = queens[i]; g.drawImage(queenImage, j * getWidth() / SIZE, i * getHeight() / SIZE, getWidth() / SIZE, getHeight() / SIZE, this); } // Paint the lines for (int i = 0; i < SIZE; i++) { g.drawLine(0, i * getHeight() / SIZE, getWidth(), i * getHeight() / SIZE); g.drawLine(i * getWidth() / SIZE, 0, i * getWidth() / SIZE, getHeight()); } } /** Specify preferred size */ public Dimension getPreferredSize() { return new Dimension(200, 200); } } } } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 6 Objectives F F F F F F F F F To know what a recursive method is and the benefits of using recursive methods (§20.1). To determine the base cases in a recursive method (§§20.2-20.5). To understand how recursive method calls are handled in a call stack (§§20.2-20.3). To solve problems using recursion (§§20.2-20.5). To use an overloaded helper method to derive a recursive method (§20.5). To get the directory size using recursion (§20.6). To solve the Towers of Hanoi problem using recursion (§20.7). To draw fractals using recursion (§20.8). To understand the relationship and difference between recursion and iteration (§20.9). Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 7 Computing Factorial Many mathematical functions are defined using recursion. We began using simple example. The factorial of a number n can be recursively define as follow: factorial(0) = 1; factorial(n) = n*factorial(n-1); n! = n * (n-1)! ComputeFactorial import java.util.Scanner; public class ComputeFactorial { /** Main method */ public static void main(String[] args) { // Create a Scanner Scanner input = new Scanner(System.in); System.out.print("Enter a non-negative integer: "); int n = input.nextInt(); // Display factorial System.out.println("Factorial of " + n + " is " + factorial(n)); } /** Return the factorial for a specified number */ public static long factorial(int n) { if (n == 0) // Base case return 1; else return n * factorial(n - 1); // Recursive call } } Run: Enter a non-negative integer: 4 Factorial of 4 is 24 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 8 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 9 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 10 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 11 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 12 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) = 3 * ( 2 * ( 1 * 1))) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 13 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) = 3 * ( 2 * ( 1 * 1))) = 3 * ( 2 * 1) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 14 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) = 3 * ( 2 * ( 1 * 1))) = 3 * ( 2 * 1) =3*2 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 15 animation Computing Factorial factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(3) = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) = 3 * ( 2 * ( 1 * 1))) = 3 * ( 2 * 1) =3*2 =6 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 16 animation Trace Recursive factorial Executes factorial(4) factorial(4) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Main method 17 animation Trace Recursive factorial factorial(4) Step 0: executes factorial(4) Step 9: return 24 Executes factorial(3) return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(4) Main method 18 animation Trace Recursive factorial factorial(4) Executes factorial(2) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(3) Space Required for factorial(4) Main method 19 animation Trace Recursive factorial factorial(4) Executes factorial(1) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(2) Space Required for factorial(3) Space Required for factorial(4) Main method 20 animation Trace Recursive factorial factorial(4) Executes factorial(0) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(1) Space Required for factorial(2) Space Required for factorial(3) Space Required for factorial(4) Main method 21 animation Trace Recursive factorial factorial(4) returns 1 Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(0) Space Required for factorial(1) Space Required for factorial(2) Space Required for factorial(3) Space Required for factorial(4) Main method 22 animation Trace Recursive factorial factorial(4) returns factorial(0) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(1) Space Required for factorial(2) Space Required for factorial(3) Space Required for factorial(4) Main method 23 animation Trace Recursive factorial factorial(4) returns factorial(1) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(2) Space Required for factorial(3) Space Required for factorial(4) Main method 24 animation Trace Recursive factorial factorial(4) returns factorial(2) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(3) Space Required for factorial(4) Main method 25 animation Trace Recursive factorial factorial(4) returns factorial(3) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Space Required for factorial(4) Main method 26 animation Trace Recursive factorial returns factorial(4) factorial(4) Step 0: executes factorial(4) Step 9: return 24 return 4 * factorial(3) Step 1: executes factorial(3) Step 8: return 6 return 3 * factorial(2) Step 2: executes factorial(2) Step 7: return 2 Stack return 2 * factorial(1) Step 6: return 1 Step 3: executes factorial(1) return 1 * factorial(0) Step 4: executes factorial(0) Step 5: return 1 return 1 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 Main method 27 factorial(4) Stack Trace Required 5 Space for factorial(0) Required 1 Space for factorial(4) Required 4 Space for factorial(1) Space Required for factorial(1) Required 3 Space for factorial(2) Space Required for factorial(2) Space Required for factorial(2) Required 2 Space for factorial(3) Space Required for factorial(3) Space Required for factorial(3) Space Required for factorial(3) Space Required for factorial(4) Space Required for factorial(4) Space Required for factorial(4) Space Required for factorial(4) Required 6 Space for factorial(1) Space Required for factorial(2) Required 7 Space for factorial(2) Space Required for factorial(3) Space Required for factorial(3) Required 8 Space for factorial(3) Space Required for factorial(4) Space Required for factorial(4) Space Required for factorial(4) Required 9 Space for factorial(4) Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 28 Other Examples f(0) = 0; f(n) = n + f(n-1); Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 29 Fibonacci Numbers By definition, the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent number is the sum of the previous two. Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89… indices: 0 1 2 3 4 5 6 7 8 9 10 11 fib(0) = 0; fib(1) = 1; fib(index) = fib(index -1) + fib(index -2); index >=2 fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0) +fib(1) = 1 + fib(1) = 1 + 1 = 2 ComputeFibonacci Run Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 30 import java.util.Scanner; public class ComputeFibonacci { /** Main method */ public static void main(String args[]) { // Create a Scanner Scanner input = new Scanner(System.in); System.out.print("Enter an index for the Fibonacci number: "); int index = input.nextInt(); // Find and display the Fibonacci number System.out.println( "Fibonacci number at index " + index + " is " + fib(index)); } /** The method for finding the Fibonacci number */ public static long fib(long index) { if (index == 0) // Base case return 0; else if (index == 1) // Base case return 1; else // Reduction and recursive calls return fib(index - 1) + fib(index - 2); } } Run Enter an index for the Fibonacci number: 8 Fibonacci number at index 8 is 21 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 31 Fibonnaci Numbers, cont. fib(4) 17: return fib(4) 0: call fib(4) return fib(3) + fib(2) 11: call fib(2) 10: return fib(3) 1: call fib(3) 16: return fib(2) return fib(2) + fib(1) 7: return fib(2) 2: call fib(2) 9: return fib(1) return fib(1) + fib(0) return fib(1) + fib(0) 8: call fib(1) return 1 13: return fib(1) return 1 14: return fib(0) 12: call fib(1) 15: return fib(0) return 0 5: call fib(0) 4: return fib(1) 3: call fib(1) return 1 6: return fib(0) return 0 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 32 Characteristics of Recursion All recursive methods have the following characteristics: – One or more base cases (the simplest case) are used to stop recursion. – Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case. In general, to solve a problem using recursion, you break it into subproblems. If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively. This subproblem is almost the same as the original problem in nature with a smaller size. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 33 Problem Solving Using Recursion Let us consider a simple problem of printing a message for n times. You can break the problem into two subproblems: one is to print the message one time and the other is to print the message for n-1 times. The second problem is the same as the original problem with a smaller size. The base case for the problem is n==0. You can solve this problem using recursion as follows: public static void nPrintln(String message, int times) { if (times >= 1) { System.out.println(message); nPrintln(message, times - 1); } // The base case is times == 0 } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 34 Think Recursively Many of the problems presented in the early chapters can be solved using recursion if you think recursively. For example, the palindrome problem in Listing 7.1 can be solved recursively as follows: public static boolean isPalindrome(String s) { if (s.length() <= 1) // Base case return true; else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case return false; else return isPalindrome(s.substring(1, s.length() - 1)); } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 35 Recursive Helper Methods The preceding recursive isPalindrome method is not efficient, because it creates a new string for every recursive call. To avoid creating new strings, use a helper method: public static boolean isPalindrome(String s) { return isPalindrome(s, 0, s.length() - 1); } public static boolean isPalindrome(String s, int low, int high) { if (high <= low) // Base case return true; else if (s.charAt(low) != s.charAt(high)) // Base case return false; else return isPalindrome(s, low + 1, high - 1); } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 36 Recursive Selection Sort Find the largest number in the list and swaps it with the last number. Ignore the last number and sort the remaining smaller list recursively. public class RecursiveSelectionSort { public static void sort(double[] list) { sort(list, 0, list.length - 1); // Sort the entire list } public static void sort(double[] list, int low, int high) { if (low < high) { // Find the smallest number and its index in list(low .. high) int indexOfMin = low; double min = list[low]; for (int i = low + 1; i <= high; i++) { if (list[i] < min) { min = list[i]; indexOfMin = i; } } // Swap the smallest in list(low .. high) with list(low) list[indexOfMin] = list[low]; list[low] = min; // Sort the remaining list(low+1 .. high) sort(list, low + 1, high); } } public static void main(String[] args) { double[] list = {2, 1, 3, 1, 2, 5, 2, -1, 0}; sort(list); for (int i = 0; i < list.length; i++) System.out.print(list[i] + " "); } -1.0 0.0 1.0 1.0 2.0 2.0 2.0 3.0 5.0 } Output: Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 37 Recursive Binary Search Case 1: If the key is less than the middle element, recursively search the key in the first half of the array. Case 2: If the key is equal to the middle element, the search ends with a match. Case 3: If the key is greater than the middle element, recursively search the key in the second half of the array. public class RecursiveBinarySearch { public static int recursiveBinarySearch(int[] list, int key) { int low = 0; int high = list.length - 1; return recursiveBinarySearch(list, key, low, high); } public static int recursiveBinarySearch(int[] list, int key, int low, int high) { if (low > high) // The list has been exhausted without a match return -low - 1; int mid = (low + high) / 2; if (key < list[mid]) return recursiveBinarySearch(list, key, low, mid - 1); else if (key == list[mid]) return mid; else return recursiveBinarySearch(list, key, mid + 1, high); } } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 38 Recursive Implementation /** Use binary search to find the key in the list */ public static int recursiveBinarySearch(int[] list, int key) { int low = 0; int high = list.length - 1; return recursiveBinarySearch(list, key, low, high); } /** Use binary search to find the key in the list between list[low] list[high] */ public static int recursiveBinarySearch(int[] list, int key, int low, int high) { if (low > high) // The list has been exhausted without a match return -low - 1; int mid = (low + high) / 2; if (key < list[mid]) return recursiveBinarySearch(list, key, low, mid - 1); else if (key == list[mid]) return mid; else return recursiveBinarySearch(list, key, mid + 1, high); } Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 39 Towers of Hanoi F F F F There are n disks labeled 1, 2, 3, . . ., n, and three towers labeled A, B, and C. No disk can be on top of a smaller disk at any time. All the disks are initially placed on tower A. Only one disk can be moved at a time, and it must be the top disk on the tower. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 40 Towers of Hanoi, cont. A B C A Original position A B B C A B Step 3: Move disk 1 from B to C B C Step 5: Move disk 1 from C to A C A Step 2: Move disk 2 from A to C A C Step 4: Move disk 3 from A to B Step 1: Move disk 1 from A to B A B B C Step 6: Move disk 2 from C to B C A B C Step 7: Mve disk 1 from A to B Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 41 Solution to Towers of Hanoi The Towers of Hanoi problem can be decomposed into three subproblems. n-1 disks n-1 disks . . . . . . A B C A Original position B Step2: Move disk n from A to C n-1 disks n-1 disks . . . . . . A B C C Step 1: Move the first n-1 disks from A to C recursively A B C Step3: Move n-1 disks from C to B recursively Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 42 Solution to Towers of Hanoi import java.util.Scanner; F F F Move the first n - 1 disks from A to C with the assistance of tower B. Move disk n from A to B. Move n - 1 disks from C to B with the assistance of tower A. Run Enter number of disks: 3 The moves are: Move disk 1 from A to B Move disk 2 from A to C Move disk 1 from B to C Move disk 3 from A to B Move disk 1 from C to A Move disk 2 from C to B Move disk 1 from A to B TowersOfHanoi public class TowersOfHanoi { /** Main method */ public static void main(String[] args) { // Create a Scanner Scanner input = new Scanner(System.in); System.out.print("Enter number of disks: "); int n = input.nextInt(); // Find the solution recursively System.out.println("The moves are:"); moveDisks(n, 'A', 'B', 'C'); } /** The method for finding the solution to move n disks from fromTower to toTower with auxTower */ public static void moveDisks(int n, char fromTower, char toTower, char auxTower) { if (n == 1) // Stopping condition System.out.println("Move disk " + n + " from " + fromTower + " to " + toTower); else { moveDisks(n - 1, fromTower, auxTower, toTower); System.out.println("Move disk " + n + " from " + fromTower + " to " + toTower); moveDisks(n - 1, auxTower, toTower, fromTower); } } } Edition, (c) 2011 Pearson Education, Inc. All Liang, Introduction to Java Programming, Eighth rights reserved. 0132130807 43 Exercise 20.3 GCD gcd(2, 3) = 1 gcd(2, 10) = 2 gcd(25, 35) = 5 gcd(205, 301) = 5 gcd(m, n) Approach 1: Brute-force, start from min(n, m) down to 1, to check if a number is common divisor for both m and n, if so, it is the greatest common divisor. Approach 2: Euclid’s algorithm Approach 3: Recursive method Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 44 Approach 2: Euclid’s algorithm // Get absolute value of m and n; t1 = Math.abs(m); t2 = Math.abs(n); // r is the remainder of t1 divided by t2; r = t1 % t2; while (r != 0) { t1 = t2; t2 = r; r = t1 % t2; } // When r is 0, t2 is the greatest common // divisor between t1 and t2 return t2; Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 45 Approach 3: Recursive Method gcd(m, n) = n if m % n = 0; gcd(m, n) = gcd(n, m % n); otherwise; Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 46 Fractals? A fractal is a geometrical figure just like triangles, circles, and rectangles, but fractals can be divided into parts, each of which is a reduced-size copy of the whole. There are many interesting examples of fractals. This section introduces a simple fractal, called Sierpinski triangle, named after a famous Polish mathematician. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 47 Sierpinski Triangle 1. 2. 3. 4. It begins with an equilateral triangle, which is considered to be the Sierpinski fractal of order (or level) 0, as shown in Figure (a). Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle of order 1, as shown in Figure (b). Leave the center triangle intact. Connect the midpoints of the sides of the three other triangles to create a Sierpinski of order 2, as shown in Figure (c). You can repeat the same process recursively to create a Sierpinski triangle of order 3, 4, ..., and so on, as shown in Figure (d). Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 48 Sierpinski Triangle Solution p1 midBetweenP1P2 midBetweenP3P1 p2 p3 midBetweenP2P3 SierpinskiTriangle Run Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 49 Eight Queens queens[0] queens[1] queens[2] queens[3] queens[4] queens[5] queens[6] queens[7] 0 4 7 5 2 6 1 3 EightQueens Run Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 50 Eight Queens 0 0 1 1 check colum n 2 3 4 5 6 7 upright diagonal 2 upleft 3 4 5 6 7 Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 51