Download Integration - WordPress.com

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Nirma University
Institute of Technology
Mathematics and Humanities department
B.Tech.(All), Semester-3 (D2D)
Handouts
Course Name: Foundation mathematics-I
Course Code: 2MA004
Integration: Integration is inverse (opposite) process of differentiation.
e.g: if
d
(sin x)  cos x , Then
dx
But we also know that
Similarly
 cos x
dx = sin x
d
 sin x  5  cos x   cos xdx  sin x  5
dx
d
 sin x  100   cos x   cos xdx  sin x  100
dx
So In general   cos xdx  sin x  c
where ‘c’ is arbitrary constant, It is known as integration
constant and it work for all above cases.
Notation of integration:
Integrand function

Symbol of integration   f  x dx  Variable w.r.t integration taken.
Standard formulae of Integration.
x n 1
1).  x dx =
+c
n 1
n
2).
1
 x dx
= log |x| + c.
3).  cos x dx = sin x + c.
4).  sin x dx = - cos x + c.
5).  sec 2 x dx = tan x + c.
6).  cos ec 2 x dx = - cot x + c.
7).  sec x  tan x dx = sec x + c.
8).  cos ecx  cot x dx = - cosec x + c.
9).
x
2
1
x
dx
= tan 1 + c.
2
a
a
a
dx
10).

11).
| x|
a x
2
2
dx
x2  a2
dx

14).
x
15).
a
a x
2
=
x
+ c.
a
1
x
1
x
sec 1
+ c =  cos ec 1 + c.
a
a
a
a
ax
 c.
log e a
12).  a x dx =
13).
= sin 1
2
= log | x +
x 2  a 2 | + c.
1
xa
dx
log
=
+ c.
2
2a
ax
 a2
2
1
xa
dx
log
=
+ c.
2
2a
xa
x
16).  tan x dx = log |sec x | + c.
17).  cot x dx = log | sin x | + c.
18).  cos ecx dx = log cos ecx  cot x  c = log | tan x 2 | + c.
19).

secx dx = log | sec x + tan x | + c.
e.g.
 x 3  x 2 1
 dx.
 
x

Sol:

=
x3
x

dx +
x3
x

x

dx +
1
2
3
1
2
x
=
 x 2 dx +
dx +
5
1

1
dx +

dx +
x2
x
=
5
x2
1
2
x
2
1
x
1
2
3

dx
1
2
x
dx +
 x 2 dx +
3
dx
x

1
2
dx
1
 x 2 dx
1
1
 1
5
1
x 2
x2
x2
=
+
+
+c
5
3
1
 1
1
1
2
2
2
7
2
2
= x 2 + x 2 + 2  x 2 + c.
7
5
Method of Substitution:
e.g 
x3
dx
1  x8
x3
I= 
dx
1  x8
Taking x 4  t
4 x 3 dx  dt
x 3 dx 

1
dt
4
I=
=
1
 1 t
2
1
dt
4
1
tan 1 t  c
4
=
1
tan 1 ( x 4 )  c
4
Method of Trigonometric Substitution:
For following type of function we have to take following
trigonometric substitution.
Function
Substitution

a2  x2
x = a sin 

x2  a2
x = a sec 

x2  a2
x = a tan 

ax & ax
x = a cos 2

ax
x = a sin 2 

ax
x = a tan 2 

2ax  x 2
x = 2a sin 2 

e.g
1
1
1
,
or
a  b cos x a  b sin x a  b sin x  c cos x
x
1
x a4
4
dx
Solution : I =
x
1
x4  a 4
dx

Taking x 2 a 2 sec  ,    0, 


2
2x dx = a 2 sec  tan  d 
tan
x
t
2
Now ,
I=
 2x
2 xdx
=
 2a
=
 2a
=
 2a
=
x 4 a 4
2
a 2 sec  tan d
2
sec  a 4 sec 2 a 4
tan  d
2
tan 
1
2
d
1
 c
2a 2
But, x 2  a 2 sec    = sec 1

I=
x2
a2
2
1
1 x
sec
c
2a 2
a2
Integration of Function of Type:   2
and
 ax bx  c
dx
e.g.
 4x
2
dx
 3x  1
dx
3
1

4 x 2  x  
4
4

dx
= 
2

3
9 1
4 x     
8  64 4 

1
dx
= 
2
4 
3  7 
x   
8   64 

 8x  3 
2
 + c.
=
tan 1 
7
 7 
=




ax 2 bx  c 
dx
Ax  B

dx and
Integration of Function of Type:   2
 ax bx  c


dx 
ax 2 bx  c 
Ax  B
e.g.  32x  1 dx
2x  x  1
3
1
(4 x  1) 
4
4 dx
2
2x  x 1
Solution: I =

=
3
4
=
3
1
log | 2 x 2  x  1 | +
4
4
=
1
4x  1
dx +
2
4
 x 1
 2x
 2x

2
1
dx
 x 1
1
2
2

1  7  
 
2 x    
4   4  



dx
 4x  1 
3
1
 + c.]
log | 2 x 2  x  1 | +
tan 1 
4
2 7
 7 
Integration of Type:  sin m x cos n xdx
In the type [  sin m x cos n xdx ], the substitution is depends on value
of m and n,
Case-I When m, n both are odd then take sin x = t
Case-II When m is odd and n is even then take cosx = t
Case-III When m is even and n is odd then take sinx = t
Case-IV When m and n are even then use sin 2 x =
and
cos 2 x =
1  cos 2 x
and simplify and then integrate.
2
1  cos 2 x
2
e.g.  sin 5 x cos 2 xdx
Solution: taking cosx = t, sinx dx = -dt
I   sin 4 x sin x cos 2 xdx
=  (1  cos 2 x) 2 cos 2 x sin xdx
=  (1  t 2 )2 t 2 (dt )
=  (1  2t 2 t 4 )( t 2 )dt
=  (2t 4 t 6 t 2 )dt
=
2t 5 t 7 t 3
  c
5
7 3
=
2
1
1
cos 5 x  cos 7 x  cos 3 x  c
5
7
3
1
x 1
3
x 3

log
c
.  log
4
x 1 4
x 3
Integration by parts method:
 u v
 du

dx = u  v dx -      vdx dx
 dx 

To choose u and v is very crucial in this case. First one
has to select u in LIATE order and remaining part of function
is v.
Where, L – Logarithemic.
I – Inverse Trigonometric
A – Algebric.
T – Trigonometric.
E – Exponential.
e.g.
x
2
log xdx
x
Solution: I=
2
log xdx
d

dx    log x   x 2 dx  dx
 dx

= log x
x
= log x 
x3
1 x3
   dx
3
x 3
=
2
x3
1
log x   x 2 dx
3
3
x3
1
=
log x  x 3  c
3
9
Definite Integration:
Fundamental principles of definite integration:
b
d (F )
 f ( x)
If
dx
e.g.
1
  4x
3
 f ( x)dx  F (b)  F (a)
a
 3x 2  2 x  1 dx
0
1
1
1
1
0
0
0
0
1
1
Sol: 4 x3dx  3 x 2 dx + 2  xdx   1dx
1
 x4 
 x3 
 x2 
=  4   + 3   +  2   + [x]10
 4 0  3 0  2 0
= 1111 = 4
Definite integration by simplification & substitution
method:
e.g.
1
e
x
0
dx
 e x
1
e
Sol: Here, I =
x
0
=
1

0
=
dx
 e x
dx
ex 
1
ex
1
e x dx
0 e 2 x  1
Taking e x = t
 e x dx = dt
therefore, when x = 0  t  e 0  1 and x = 1  t  e 1  e

e
t
I=
1
dt
1
2
= [tan 1 t ]1e
= tan 1 e  tan 1 1
 tan 1 e 

.
4
Find out the definite integration by integration by parts
method:
b
b
b
a
a
a
 du

 u  vdx  u  vdx    dx  vdx dx
1
e.g.  x tan 1 xdx
0
Sol: I =
1
 x tan
1
xdx
0
1

x2 
I =  tan 1 x   2 0

1
1
x2

0 1  x 2 2 dx
1
2
  1  1 ( x  1)  1
=    0  
dx
2
 4 2  2 0 1 x
=
 1 
1 
  1 
dx
8 2 0  1 x 2 
=
 1
 [ x  tan 1 x]10
8 2
=
 1  
 1
8 2  4 
=
 1
 .
4 2
1
Definite Integration by using properties:
We have following properties of definite integration
1).
b

a
b
2).

c
b
a
c
f  x  dx   f  x  dx   f  x  dx if a  c  b
a
f  x  dx    f  x  dx
a
b
a
3).
If f  x  is odd function
 f  x  dx 0
a
a
4).

a
a
f  x  dx  2  f  x  dx If f  x  is even function
0
a
5).

0
a
f  x  dx   f  a  x  dx
0
b
6).

a
b
f  x  dx   f  a  b  x  dx
a
Related documents