Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Nirma University Institute of Technology Mathematics and Humanities department B.Tech.(All), Semester-3 (D2D) Handouts Course Name: Foundation mathematics-I Course Code: 2MA004 Integration: Integration is inverse (opposite) process of differentiation. e.g: if d (sin x) cos x , Then dx But we also know that Similarly cos x dx = sin x d sin x 5 cos x cos xdx sin x 5 dx d sin x 100 cos x cos xdx sin x 100 dx So In general cos xdx sin x c where ‘c’ is arbitrary constant, It is known as integration constant and it work for all above cases. Notation of integration: Integrand function Symbol of integration f x dx Variable w.r.t integration taken. Standard formulae of Integration. x n 1 1). x dx = +c n 1 n 2). 1 x dx = log |x| + c. 3). cos x dx = sin x + c. 4). sin x dx = - cos x + c. 5). sec 2 x dx = tan x + c. 6). cos ec 2 x dx = - cot x + c. 7). sec x tan x dx = sec x + c. 8). cos ecx cot x dx = - cosec x + c. 9). x 2 1 x dx = tan 1 + c. 2 a a a dx 10). 11). | x| a x 2 2 dx x2 a2 dx 14). x 15). a a x 2 = x + c. a 1 x 1 x sec 1 + c = cos ec 1 + c. a a a a ax c. log e a 12). a x dx = 13). = sin 1 2 = log | x + x 2 a 2 | + c. 1 xa dx log = + c. 2 2a ax a2 2 1 xa dx log = + c. 2 2a xa x 16). tan x dx = log |sec x | + c. 17). cot x dx = log | sin x | + c. 18). cos ecx dx = log cos ecx cot x c = log | tan x 2 | + c. 19). secx dx = log | sec x + tan x | + c. e.g. x 3 x 2 1 dx. x Sol: = x3 x dx + x3 x x dx + 1 2 3 1 2 x = x 2 dx + dx + 5 1 1 dx + dx + x2 x = 5 x2 1 2 x 2 1 x 1 2 3 dx 1 2 x dx + x 2 dx + 3 dx x 1 2 dx 1 x 2 dx 1 1 1 5 1 x 2 x2 x2 = + + +c 5 3 1 1 1 1 2 2 2 7 2 2 = x 2 + x 2 + 2 x 2 + c. 7 5 Method of Substitution: e.g x3 dx 1 x8 x3 I= dx 1 x8 Taking x 4 t 4 x 3 dx dt x 3 dx 1 dt 4 I= = 1 1 t 2 1 dt 4 1 tan 1 t c 4 = 1 tan 1 ( x 4 ) c 4 Method of Trigonometric Substitution: For following type of function we have to take following trigonometric substitution. Function Substitution a2 x2 x = a sin x2 a2 x = a sec x2 a2 x = a tan ax & ax x = a cos 2 ax x = a sin 2 ax x = a tan 2 2ax x 2 x = 2a sin 2 e.g 1 1 1 , or a b cos x a b sin x a b sin x c cos x x 1 x a4 4 dx Solution : I = x 1 x4 a 4 dx Taking x 2 a 2 sec , 0, 2 2x dx = a 2 sec tan d tan x t 2 Now , I= 2x 2 xdx = 2a = 2a = 2a = x 4 a 4 2 a 2 sec tan d 2 sec a 4 sec 2 a 4 tan d 2 tan 1 2 d 1 c 2a 2 But, x 2 a 2 sec = sec 1 I= x2 a2 2 1 1 x sec c 2a 2 a2 Integration of Function of Type: 2 and ax bx c dx e.g. 4x 2 dx 3x 1 dx 3 1 4 x 2 x 4 4 dx = 2 3 9 1 4 x 8 64 4 1 dx = 2 4 3 7 x 8 64 8x 3 2 + c. = tan 1 7 7 = ax 2 bx c dx Ax B dx and Integration of Function of Type: 2 ax bx c dx ax 2 bx c Ax B e.g. 32x 1 dx 2x x 1 3 1 (4 x 1) 4 4 dx 2 2x x 1 Solution: I = = 3 4 = 3 1 log | 2 x 2 x 1 | + 4 4 = 1 4x 1 dx + 2 4 x 1 2x 2x 2 1 dx x 1 1 2 2 1 7 2 x 4 4 dx 4x 1 3 1 + c.] log | 2 x 2 x 1 | + tan 1 4 2 7 7 Integration of Type: sin m x cos n xdx In the type [ sin m x cos n xdx ], the substitution is depends on value of m and n, Case-I When m, n both are odd then take sin x = t Case-II When m is odd and n is even then take cosx = t Case-III When m is even and n is odd then take sinx = t Case-IV When m and n are even then use sin 2 x = and cos 2 x = 1 cos 2 x and simplify and then integrate. 2 1 cos 2 x 2 e.g. sin 5 x cos 2 xdx Solution: taking cosx = t, sinx dx = -dt I sin 4 x sin x cos 2 xdx = (1 cos 2 x) 2 cos 2 x sin xdx = (1 t 2 )2 t 2 (dt ) = (1 2t 2 t 4 )( t 2 )dt = (2t 4 t 6 t 2 )dt = 2t 5 t 7 t 3 c 5 7 3 = 2 1 1 cos 5 x cos 7 x cos 3 x c 5 7 3 1 x 1 3 x 3 log c . log 4 x 1 4 x 3 Integration by parts method: u v du dx = u v dx - vdx dx dx To choose u and v is very crucial in this case. First one has to select u in LIATE order and remaining part of function is v. Where, L – Logarithemic. I – Inverse Trigonometric A – Algebric. T – Trigonometric. E – Exponential. e.g. x 2 log xdx x Solution: I= 2 log xdx d dx log x x 2 dx dx dx = log x x = log x x3 1 x3 dx 3 x 3 = 2 x3 1 log x x 2 dx 3 3 x3 1 = log x x 3 c 3 9 Definite Integration: Fundamental principles of definite integration: b d (F ) f ( x) If dx e.g. 1 4x 3 f ( x)dx F (b) F (a) a 3x 2 2 x 1 dx 0 1 1 1 1 0 0 0 0 1 1 Sol: 4 x3dx 3 x 2 dx + 2 xdx 1dx 1 x4 x3 x2 = 4 + 3 + 2 + [x]10 4 0 3 0 2 0 = 1111 = 4 Definite integration by simplification & substitution method: e.g. 1 e x 0 dx e x 1 e Sol: Here, I = x 0 = 1 0 = dx e x dx ex 1 ex 1 e x dx 0 e 2 x 1 Taking e x = t e x dx = dt therefore, when x = 0 t e 0 1 and x = 1 t e 1 e e t I= 1 dt 1 2 = [tan 1 t ]1e = tan 1 e tan 1 1 tan 1 e . 4 Find out the definite integration by integration by parts method: b b b a a a du u vdx u vdx dx vdx dx 1 e.g. x tan 1 xdx 0 Sol: I = 1 x tan 1 xdx 0 1 x2 I = tan 1 x 2 0 1 1 x2 0 1 x 2 2 dx 1 2 1 1 ( x 1) 1 = 0 dx 2 4 2 2 0 1 x = 1 1 1 dx 8 2 0 1 x 2 = 1 [ x tan 1 x]10 8 2 = 1 1 8 2 4 = 1 . 4 2 1 Definite Integration by using properties: We have following properties of definite integration 1). b a b 2). c b a c f x dx f x dx f x dx if a c b a f x dx f x dx a b a 3). If f x is odd function f x dx 0 a a 4). a a f x dx 2 f x dx If f x is even function 0 a 5). 0 a f x dx f a x dx 0 b 6). a b f x dx f a b x dx a