Download Organic Chemistry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot College
Fall 2006
Replaced Fall 2010
Course Outline for Chemistry 12B
ORGANIC CHEMISTRY II
Catalog Description:
12B - Organic Chemistry II
5 Units
Continuation of Chemistry 12A with an introduction to the chemistry of dienes, aromatics, amines,
carbanions, carboxylic acids, carboxylic acid derivatives, aldehydes, ketones and biochemical topics
focusing on structure, synthesis, and mechanisms of reaction. Laboratory work in basic techniques,
synthetic methods, qualitative, spectroscopic, and chromatographic analysis techniques. Chemistry 12B
is the second semester in a year course in Organic Chemistry designed for students majoring in
Chemistry related disciplines. Prerequisite: Chemistry 12A (completed with a grade of C or higher). 3
hours lecture, 6 hours laboratory.
[Typical contact hours: lecture 52.5, laboratory 105]
Prerequisite Skills:
Before entering the course, the student should be able to:
1.
name compounds of the common organic functional groups using the IUPAC system of
nomenclature;
2.
use a mechanistic approach to make reasonable predictions of major products formed in
reactions involving hydrocarbons, alkyl halides, alcohols and ethers;
3.
explain physical and chemical properties of groups studied based on structural analysis;
4.
use spectroscopic data from infrared spectroscopy, 1H nuclear magnetic spectroscopy to
elucidate structures for organic compounds;
5.
identify structural isomers, stereoisomers and conformers and determine relationships between
pairs of structures;
6.
predict and draw the possible conformations of acyclic and cyclic organic compounds and analyze
these conformation for relative stability;
7.
identify stereocenters and chiral molecules and determine stereochemical relationships between
pairs of compounds;
8.
use resonance theory and/or molecular theory to interpret reactivity of organic compounds;
9.
suggest plausible single step and multi-step syntheses of hydrocarbons, alcohols, alkyl halides
and ethers;
10.
analyze and explain nucleophilic substitutions reactions via SN1 and SN2 mechanisms, including
the influence of changes in structure of substrate and solvent;
11.
analyze and explain elimination reactions via E1 and E2 mechanisms, including the influence of
changes in structure of substrate and solvent;
12.
develop qualitative and quantitative problem solving skills;
13.
perform basic laboratory techniques in organic laboratory: crystallization, simple and fractional
distillation, melting and boiling point determinations, extractions, chromatography, and
spectroscopy analysis;
14.
explain the theory behind the techniques of crystallization, melting point determination, extraction,
distillation, boiling point determination and chromatographic separations;
15.
synthesize, separate and analyze organic compounds using microscale and semi-microscale
methods;
16.
effectively communicate observations and subsequent conclusions by means of keeping a bound
laboratory notebook and written laboratory reports;
17.
utilize library and internet resources for information and in support of laboratory reports;
18.
follow safe practices in handling and disposing of organic chemicals.
Expected Outcomes for Students:
Upon completion of the course, the student should be able to:
1.
propose reasonable syntheses for compounds in the classes studied;
Chabot College
Course Outline for Chemistry 12B, Page 2
Fall 2006
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
use infrared, 1H and 13C nuclear magnetic resonance spectroscopic information and data
concerning reactions or physical properties to elucidate structures for compounds in the classes
studied;
propose and draw mechanistic pathways which illustrate how the products are obtained from the
reactants;
evaluate kinetic data as a tool in elucidating the mechanism for a reaction;
name compounds of the classes studied;
carry out syntheses in the laboratory, using techniques developed in Chemistry 12A to monitor the
progress of the reaction and the purity of the product;
identify an unknown organic compound in the laboratory by chemical methods and spectroscopic
methods;
utilize carbanions chemistry in proposing sophisticated syntheses;
apply knowledge of organic reactions to biological processes;
develop qualitative and quantitative problem solving techniques;
effectively communicate observations and subsequent conclusions by means of written laboratory
notebooks and report.
Course Content (Lecture):
1.
2.
3.
4.
5.
6.
Dienes:
a. Structure and properties
b. Resonance theory and stability of dienes
c. Electrophilic addition to conjugated dienes; 1,4-addition
d. Kinetic vs. thermodynamic products (1,2- vs. 1,4-addition)
e. Polymerization of dienes
f. Isoprene and the isoprene rule
g. The Diels-Alder reaction
Aromaticity:
a. Benzene; structure and resonance
b. Aromatic character; the Huckel 4n+2 rule
c. Reactions of benzene
d. Electrophilic aromatic substitution mechanism, including reactivity and orientation
e. Synthesis of substituted benzenes
f. fElectrophilic substitution in naphthalene
Arenes and Their Derivatives:
a. Structure and properties
b. Nomenclature
c. Reactions of alkylbenzenes
d. Preparation and reactions of alkenylbenzenes
Phenols:
a. Structure and properties
b. Nomenclature
c. Structure and relationship to acid strength
d. Laboratory preparations of phenols
e. Reactions of phenols
Aryl Halides:
a. Structure and properties
b. Nomenclature
c. Laboratory preparations of aryl halides
d. Reactions of aryl halides
e. Detailed analysis of nucleophilic aromatic substitution reactions, including both bimolecular
displacement and elimination-addition mechanisms
Aldehydes and Ketones:
a. Structure and properties
Chabot College
Course Outline for Chemistry 12B, Page 3
Fall 2006
7.
8.
9.
10.
11.
12.
13.
b. Nomenclature
c. Laboratory preparations of aldehydes and ketones
d. Reactions of aldehydes and ketones
e. Detailed analysis of nucleophilic addition
f. Multi-step syntheses of aldehydes, ketones and related compounds
Carboxylic Acids:
a. Structure and properties
b. Nomenclature
c. Acidity and relationship to structure
d. Laboratory preparations of carboxylic acids
e. Reactions of carboxylic acids
Functional Derivatives of Carboxylic Acids:
a. Nucleophilic acyl substitution reactions
b. Mechanism of nucleophilic acyl substitutions and comparison to alkyl nucleophilic
substitutions
c. Structure, nomenclature, preparation and reactions of acid chlorides
d. Structure, nomenclature, preparation and reactions of acid anhydrides
e. Structure, nomenclature, preparation and reactions of amides
f. Structure, nomenclature, preparation and reactions of esters
Amines:
a. Structure and properties
b. Nomenclature
c. Structure and relationship to base strength
d. Sterochemistry of nitrogen
e. Laboratory preparations of amines
f. Reactions of amines
Heterocyclic Compounds:
a. Structure and properties of pyrrole, furan and thiophene and pyridine
b. Electrophilic substitution in heterocyclic compounds
c. Nucleophilic substitution in pyridine
Carbanion Chemistry:
a. Aldol condensations
b. Claisen condensations
c. Wittig reactions
d. Malonic ester synthesis of carboxylic acids
e. Acetoacetic ester synthesis of ketones
f. Stork reaction of enamines
g. Use of the above reactions in multi-step syntheses
Alpha-beta unsaturated Compounds:
a. Structure and properties
b. Laboratory preparations
c. Electrophilic and nucleophilic addition reactions
d. Michael additions
Biomolecules:
a. Carbohydrates
1) Classifications, Fischer Projections and configurations
2) Cyclic structures of monosaccharides, hemiacetal formation
3) Monosaccharide anomers and mutarotation
4) Reactions of monosaccharides (Kiliani-Fishcher synthesis and The Ruff Degradation)
5) Disaccharides and polysaccharides
b. Amino acids and Proteins
1) Structure and properties of amino acids including isoelectric points
2) Synthesis of alpha amino acids
3) Peptide bonds
Chabot College
Course Outline for Chemistry 12B, Page 4
Fall 2006
c.
4) Peptide sequencing (Edman Degradation and C-Terminal Residue Determination
Technique)
5) Peptide synthesis
6) Proteins, structure and denaturation
7) Enzymes
Lipids
1) Structure and properties of waxes, fats and oils
2) Phospholipids, structure and use in cell membranes
3) Structure and biosyntheses of terpenes and steroids
Course Content (Laboratory):
1.
2.
Techniques:
a. Boiling point and melting point determinations
b. Extraction
c. Crystallization
d. Refractometry
e. Simple and vacuum distillations
f. Gas chromatography
g. Multi-step syntheses
Qualitative Analysis:
a. Wet chemistry analysis of unknowns including formation and purification of derivatives for
elucidating molecular structure.
b. Interpretation of IR and NMR spectra for elucidating molecular structures.
c. Library and Internet Research
Methods of Presentation:
1.
2.
3.
4.
Lecture and class discussions
Models, computerized molecular modeling, videos, and transparencies
Demonstrations and computer simulations
Hands-on laboratory work with direct access to all instrumentation
Assignments and Methods of Evaluating Student Progress:
1.
Typical Assignments
a. Read the chapter on carboxylic acids in your text
1) complete all the designated end of the chapter problems
2) design a separation scheme to separate benzoic acid from a mixture with naphthalene
using the acidity and solubility of benzoic acid and the benzoate ion.
b. Propose a synthesis of 4-nitro-2,6-dibromoanisole from anisole
c. Draw all resonance structures for the sigma complex formed during the para attack of an
electrophile on aniline.
2.
Methods of Evaluating Student Progress
a. Quizzes
b. Midterm examinations
c. Homework assignments
d. Written laboratory reports
e. Written laboratory notebook
f. Final examination
Chabot College
Course Outline for Chemistry 12B, Page 5
Fall 2006
Textbook(s) (Typical):
Organic Chemistry, Wade. Prentice Hall Publishers, 2005
Introduction to Organic Laboratory Techniques, a Microscale Approach, Pavia, Lampman, Kriz
and Engel, Saunders College Publishing, 1999
Special Student Materials:
1.
2.
3.
4.
Molecular model kit
Scientific calculator
Safety goggles approved for Chemistry laboratory
Laboratory coat/apron
DG:al revised 10/18/05