Download Questions for Sections 7.1 and 7.2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Dammam Community College
MATH 012
Past Exam Questions
Sections 7.1& 7.2
3
, write cot  in terms of cos .
2
 cos 
Answer: cot =
1  cos 2 
1. For    
2. For   t 
3
, write csct in terms of tan t .
2
 1  tan 2 t
Answer: csc t =
tan t
sin x
1  cos x

in terms of csc x only.
1  cos x
sin x
Answers:  2 csc x
3. Write the expression
4. Write the expression
csc t  cot t 1  sin t

as a single trigonometric function.
sec t  tan t 1  cos t
Answer:  cot t
5. Write the expression
cos   sin  tan 
in terms of sec only.
cos 
Answer:  sec2 
6. If the terminal side of an angle  in standard position contains the point P  3,5 , find the value of
cot     sec    .
Answer: 
9  5 34
15
©12th April, 2010. DCC-KFUPM
Page 1
Dammam Community College
MATH 012
7. The expression
a)
b)
c)
d)
e)
sec  tan  2
 csc  cot  2
sec  sin  2
 cos  tan  2
sec  csc 2
8. The expression
a)
b)
c)
d)
e)
1  sin 
is identical to
1  sin 
sin x
 cot x is identical to
1  cos x
csc x
 cos x
sin x
csc x  cot x
tan x
3

9. If x  sin  , where 0    , then the expression
2
2
12 x 2
9  4x 
2
3
simplifies to
2
a) tan 2  sec
b) tan 2  sin 
c) tan 2  cos
d) cot 2  sec
e) cot 2  sin 
sin 3 x  cos3 x
simplifies to
sin x  cos x
1  sin x cos x
1  2sin x cos x
1  2sin x cos x
1  sin x cos x
1  sin x cos x
10. The expression
a)
b)
c)
d)
e)
©12th April, 2010. DCC-KFUPM
Page 2
Dammam Community College
MATH 012
11. The expression
a)
b)
c)
d)
e)
tan t
1  sec t

simplifies to
1  sec t
tan t
2csct
2sect
2cot t
2 tan t
2sint
12. Which one of the following is an odd function?
3cos x
a) f ( x)  2
x tan x  csc x
b) f ( x)  x3  tan 2 x
1  x cos x
c) f ( x) 
sin x  tan x
x2
d) f ( x) 
3  cos x
e) f ( x)  x3 csc x  1
13. If f ( x)  3cos x and g ( x)  sin x  tan x , then
a) f ( x) is an even function and g ( x ) is an odd function.
b) both f ( x) and g ( x) are even functions.
c) f ( x) is an odd function and g ( x ) is an even function.
d) f ( x) is an even function and g ( x ) is neither an odd nor an even function.
e) both f ( x) and g ( x) are odd functions.
©12th April, 2010. DCC-KFUPM
Page 3
Related documents