Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Complex Numbers 1. If ( x iy)1 3 2 3i, then 3x 2 y is equal to (a) 2. The value of (a) 3. 60 120 (c) (d) 60 (e) (d) 1 3i 2 156 cos30 i sin 30 is equal to cos60 i sin 60 (b) i (b) 1 If a cos θ i sin θ, then (a) 5. (b) i 1 3i 2 (c) If i 1 and n is a positive integer, then i n i n1 i n 2 i n3 is equal to (a) 4. 20 Let z (a) i cot θ 2 i in (c) (d) 0 (c) i cos 1 a is equal to 1 a (b) i tan θ 2 θ 2 (d) i cos ec θ 2 11 3i . If α is a real number such that z iα is real, then the value of α is 1 i 7 7 3 (b) (c) (d) (e) 4 4 13 6. The value of sum (i n i n 1 ) , where i 1 , equals n 1 (a) 7. 9. (b) i 1 i (d) 0 1 5 3cosθ (c) 1 3 5cosθ (c) The real part of (1 cos θ 2i sin θ )1 is (a) 8. i 1 3 5cosθ (b) (d) 1 5 3cosθ x y If z x iy and z1 3 p iq , then ( p 2 q 2 ) is equal to p q (a) (b) (c) (d) 2 1 1 2 The values of x and y satisfying the equation (a) x 1, y 3 (b) (1 i) x 2i (2 3i) y i i are 3i 3i x 3, y 1 1 (c) x 0, y 1 (d) x 1, y 0 10. 3 3 4i 1 is equal to 1 2 i 1 i 2 4i (a) 11. π 3 (b) nπ π 3 π 3 (d) None of these (d) π 2 (c) nπ 45 (b) 15 (c) 10 (d) 6 π (b) π (c) π 2 1 (b) 2 (c) x2 y 2 1 (b) (d) 9 4 (e) 3 z 2i 1, where z x iy, is 2z i x2 y 2 1 (c) x2 y 2 1 (d) 2 x2 3 y 2 1 3 2i 2 (b) 3 2i 2 (c) 3 2i (d) None of these 0 (b) 2 (d) 1 110 (d) 70 (c) 1 The principal amplitude of (sin 40 i cos40)5 is (a) 19. 1 9 i 4 4 For any complex number z, the minimum value of | z | | z 1| is (a) 18. (d) The solution of equation | z | z 1 2i is (a) 17. 2nπ The locus of z satisfying the inequality (a) 16. 1 9 i 4 4 The modulus of the complex number z such that z 3 i 1 and arg( z ) π is equal to (a) 15. (c) π If π arg( z) then arg( z ) arg( z ) is 2 (a) 14. 1 9 i 2 2 If x 3 i , then x3 3x 2 8x 15 is equal to (a) 13. (b) 3 2i sin θ will be purely imaginary, if θ is equal to 1 2i sin θ (a) 12. 1 9 i 2 2 If 70 (b) 110 (c) z 25 5, find the value of | z | z 1 2 (a) 20. x nπ (b) π 4 π θ 1 x n π 2 (b) 6, 6 (b) x2 y 2 2 x 1 (b) 0 (c) θ (d) θ x0 (c) (d) No value of x π 2 (c) 3π 4 (d) 5π 4 (c) 6,0 x2 y 2 2 x 1 (c) (b) 3/ 2 (c) 1/ 2 (d) (d) 7,2 0, 1 z 1 π , then z 1 4 x2 y 2 2 y 1 (d) x2 y 2 2 x 1 β α is 1 αβ 1 (e) 2 The number of solutions for the equations | z 1| | z 2 | | z i | is one solution (b) 3 solutions (c) 2 solutions (d) no solution π π The real part of 1 cos i sin is 5 5 (a) 1 (b) 28. (b) If α and β are different complex numbers with | β | 1, then (a) 27. θ π If z x iy is a variable complex number such that arg (a) 26. 6 If | z 4 | 3, then the greatest and the least value of | z 1| are respectively (a) 25. (d) Let z, w be complex numbers such that z iw 0 and arg( zw) π. Then, arg( z ) equals (a) 24. 5 The complex numbers sin x i cos 2 x and cos x i sin 2 x are conjugate to each other for (a) 23. (c) (a) 22. 4 If arg( z) θ, then arg z is equal to (a) 21. (b) 3 1 (c) 2 1 π cos 2 10 1 π cos 2 5 (d) (e) 1 π sec 2 10 Let z1 be a complex number with | z1 | 1 and z 2 be any complex number, then (a) 0 (b) (c) 1 3 1 (d) z1 z2 is equal to 1 z1 z2 2 29. π If the amplitude of z 2 3i is , then the locus of z x iy, is 4 (a) x y 1 0 (b) x y 1 0 (c) x y 1 0 (d) x y 1 0 n 30. 31. π π 1 sin 8 i cos 8 The smallest positive integral value of n such that is purely imaginary, 1 sin π i cos π 8 8 3 8 is equal to (a) (b) (c) (d) 4 2 If n is an integer which leaves remainder one when divided by three, then (1 3i)n (1 3i)n , equals (a) 32. If 2n1 (c) (2)n (d) 2n (b) 0 (c) 1 1 (d) 2 x x sin 2 cos 2 i tan( x) is real, then the set of all possible value of x is If the expression x 1 2i sin 2 (a) 34. (b) 3 a ib, then [(a 2)2 b2 ] is equal to 2 cos θ i sin θ (a) 33. 2n1 nπ α (b) (c) 2nπ nπ α 2 (d) None of these (d) 24 If z 2 z 1 0, where z is a complex number, then the value of 2 2 2 2 12 (c) 1 2 1 3 1 6 1 z z 2 z 3 ... z 6 is z z z z (a) 35. 18 30 (b) (c) 32 2 (d) None of these If 1, ω, ω2 are the cube roots of unity, then (1 ω)(1 ω2 )(1 ω4 )(1 ω8 ) is equal to (a) 37. (b) If ω is a cube root of unity, then the value of (1 ω ω2 )5 (1 ω ω2 )5 is (a) 36. 6 1 (b) (c) 0 ω2 (d) π If ω is a complex cube root of unity, then the value of sin (ω10 ω23 )π is 6 4 ω 1 (a) 2 (b) 3 2 (c) 1 (d) 2 3 2 (e) 1 2 (d) 1 n 38. 3 i A value of n such that 1 is 2 2 (a) 39. (b) 12 (c) 3 2 The value of the expression 1 1 1 1 1 1 2 1 1 2 3 2 2 2 ... (n 1) n n 2 is ω ω ω ω ω ω n(n 1) 2 (a) 40. (b) n(n 1) 2 n 2 (c) (d) None of these π π π π π π The value of cos i sin cos i sin cos i sin ... is 2 2 4 4 8 8 (a) 41. n(n 1) 2 n 2 2 (b) 1 1 (c) 0 (d) None of these If ω( 1) be a cube root of unity and (1 ω2 )n (1 ω4 )n , then the least positive value of n is (a) (b) 2 (c) 3 (d) 5 6 42. If 1, a1 , a2 ,..., an 1 are the n roots of unity, then the value of (1 a1 )(1 a2 )(1 a3 )...(1 an 1 ) is equal to (a) 43. 44. i Let a e 1 2 (c) (d) n 0 . Then, the equation whose roots are a a 2 and a 2 a 4 is x2 2 x 4 0 (b) x2 x 1 0 (d) x2 2 x 4 0 (e) x2 2 x 4 0 (c) x2 x 4 0 6 2kπ 2kπ Value of sin i cos is equal to 7 7 k 1 1 (b) (c) 1 0 (d) None of these Let x α β, y αω βω2 , z αω2 βω, ω is an imaginary cube rot of unity. The value of xyz is (a) 46. 2π 3 (b) (a) (a) 45. 3 α2 β 2 (b) α2 β 2 (c) α3 β 3 If 1, ω, ω2 are the cube roots of unity, then (3 ω2 ω4 )6 is equal to 5 (d) α3 β 3 (a) 47. (c) 729 (d) 2 0 The value of (2 ω)(2 ω2 )(2 ω10 )(2 ω11 ), where ω is the complex cube root of unity, is (a) 48. (b) 64 49 (b) 50 (c) (d) 48 47 (e) The value of the expression 1. (2 ω)(2 ω2 ) 2(3 ω)(3 ω2 ) 64 (n 1)(n ω)(n ω2 ) where ω is an imaginary cube root of unity is 49. (a) (n 1)n(n2 3n 4) / 4 (b) (n 1)n(n2 3n 4) / 2 (c) (n 1)n(n2 3n 4) / 2 (d) None of these If ω is an imaginary cube root of unity, n is a positive integer but not a multiple of 3, then the value of 1 ωn ω2n is (a) 50. (b) ω2 (c) 0 (d) ω2 1 (c) cos9θ i sin 9θ (cos θ i sin θ ) 4 is equal to (sin θ i cos θ )5 (a) (d) 51 3 cos θ i sin θ sin 9θ i cos9θ (b) (e) sin θ i cos θ cos θ i sin θ If P is the point in the A grand diagram corresponding to the complex number 3 i and OPQ is an isosceles right angled triangle, right angled at ' O ' , then Q represents the complex number (a) 52. 53. 1 i 3 or 1 i 3 (b) 1 i 3 3 i or 1 i 3 (c) (d) 1 i 3 The centre of a regular hexagon is at the point z i. If one of its vertices is at 2 i, then the adjacent vertices of 2 i are at the points (a) 1 2i (e) 1 i(1 3) (b) i 1 3 2 i(1 3) (c) (d) 1 i(1 3) For all complex numbers z1 , z2 satisfying | z1 | 12 and | z2 3 4i | 5, the minimum value of | z1 z2 | is (a) 54. 4 (b) (c) 3 2 (d) 1 Let z1 and z 2 be roots of the equation z 2 pz q 0 where p, q are real. The points represented by z1 , z2 and the origin form an equilateral triangle, if (a) p2 3q (b) p2 3q (c) 6 p2 3q (d) p 2 2q 55. The region of the Argand diagram defined by z 1 z 1 4 is (a) (c) 56. exterior of a circle None of the above a straight line (b) a circle (c) a parabola (d) None of these (c) a straight line (d) a circle z 1 If Im 4, then locus of z is 2z 1 (a) 58. (b) (d) z 1 π The locus of the points z which satisfy the condition arg is z 1 3 (a) 57. interior of an ellipse interior and boundary of an ellipse an ellipse (b) a parabola The point (4, 1) undergoes the following three transformations successively (i) reflection about the line y x (ii) translation through a distance of 2 unit along the positive direction of x-axis (iii) rotation through an angle of π about the origin in the anti-clockwise direction 4 The final position of the point is (a) 1 7 , 2 2 (b) 1 7 , 2 2 (c) ( 2,7 2) (d) ( 2,7 2) ANSWERS 1. c 2. a 3. d 4. a 5. d 6. b 7. d 8. d 9. b 10. d 11. c 12. b 13. a 14. e 15. c 16. b 17. b 18. b 19. c 20. d 21. d 22. c 23. b 24. c 25. d 26. a 27. b 28. b 29. d 30. a 31. c 32. b 33. b 34. b 35. b 36. a 37. e 38. a 39. c 40. c 41. b 42. 43. e 44. d 45. c 46. a 47. a 48. 7 c a 49. c 50. d 51 a 52. d 55. c 56. b 57. d 58. b 53. d 54. a IIT ADVANCED LATEST 1. Let complex numbers and x x0 y y0 2 2 1 2 2 lie on circles x x0 y y0 r 2 and [2013] 2 4r 2 , respectively. If z0 x0 iy0 satisfies the equation 2 z0 r 2 2 , then = 1 2 (a) 2. Let w (b) 1 2 (c) 1 7 (d) 3 i and P {wn : n 1, 2,3,...} . Further H1 z C : Re z 2 1 H 2 z C : Re z , where C is the set of all complex numbers. 2 1 3 1 and 2 [2013] If z1 P H1 , z2 P H 2 and O represents the origin, then z1Oz2 (a) 2 (b) 6 2 3 (c) Paragraph for Questions 3 and 4 (d) 5 6 Let S S1 S2 S3 , where [2013] z 1 3i S1 z C : z 4 , S2 z C : lm 0 and S3 z C : Re z 0 1 3i 3. min 1 3i z zS (a) 2 3 2 (b) 4. Area of S 5. Matching List Type (a) 10 3 2 3 2 (c) 20 3 (b) 3 3 2 (c) 2kπ 2kπ Let zk cos i sin ; k 1,2,...,9. 10 10 List I List II 8 (d) 3 3 2 16 3 (d) [2014] 32 3 P. For each z k there exists a z j such that zk z j 1 Q. There exists a k {1,2,...,9} such that z1 z zk has 1. True no solution z in the set of complex numbers 2. False R. |1 z1 ||1 z2 | ...|1 z9 | equals 10 3. 1 S. 9 2kπ 1 k 1 cos equals 10 4. 2 Answers : 1. c 2. c 3. c 4. b 5. P (1), Q (2), R (3), S (4) AIEEE/IITMAINS 1. 2. 3. If z 1 and 2 z is real, then the point represented by the complex number z lies : z 1 (a) either on the axis or on a circle not passing through origin.(b) on the imaginary axis. (c) either on the real axis or on a circle passing through the origin. (d) on a circle with centre at the origin. 1 z If z is a complex number of unit modulus and argument θ , then arg equals 1 z π θ π θ [2013 ] θ (a) (b) (d) θ (c) 2 1 If z is a complex number such that | z | 2, then the minimum value of z : 2 5 2 (a) is equal to (b) (c) is strictly greater than 5 2 lies in the interval 1,2 [2013 ] 3 5 is strictly greater than but less than 2 2 (d) ANSWERS 1. [2012] c 2. c 3. D PAST YEARS IIT SUBJECTIVE EXERCISE 9 1. Find the real values of x and y for which the following equation is satisfied (1 i ) x 2i (2 3i ) y i i. 3i 3i 2. [1980] Let the complex numbers z1 , z2 and z3 be the vertices of an equilateral triangle. Let z0 be the circumcentre of the triangle. Then prove that z12 z22 z32 3z02 3. For complex number z1 x1 iy1 and z2 x2 iy2 , we write z1 z2 , if x1 x2 and y1 y2 . Then for all complex numbers z with 1 z , prove that 4. 1 z 0 1 z A relation R on the set of complex numbers is defined by z1 R z2 if and only if Show that R is an equivalence relation. 5. [1983] If the complex numbers, z1 , z2 and z3 represent the vertices of an equilateral triangle such that [1984] Show that the area of the triangle on the argand diagram formed by the complex numbers z, iz and z iz is 8. z1 z2 is real. z1 z2 Prove that the complex numbers z1 , z2 , and the origin from an equilateral triangle only if z1 z2 z3 then z1 z2 z3 0 . 7. [1981-FCTS] [1982] z12 z22 z1 z2 0 . 6. [1981] 1 2 z . 2 [1986] Complex numbers z1 , z2 , z3 are the vertices right angled triangle with right angle at C . Show that ( z1 z2 ) 2 2( z1 z3 )( z3 z2 ) . [1986] 9. Prove that the cube roots of the unity when represented on argand diagram from the vertices of an equilateral triangle. [1986] 10. For any two complex numbers z1 , z2 and real numbers a and b . Prove that az1 bz2 bz1 az2 a 2 b2 z1 z2 2 11. 2 2 2 If α , β , γ are the cube roots of p, p 0 , then for any x, y and z , prove that xα yβ zγ w2 xβ yγ zα 12. [1988] [1989] If a and b are real numbers between 0 and 1 such that the points z1 a i, z2 1 bi and z3 0 from an equilateral triangle, then find a and b . 10 [1989] 13. Let z1 10 6i and z2 4 6i . If z is any complex number such that the argument of is π , then prove that z 7 9i 3 2 . 4 z z1 z z2 [1990] 14. ABCD is a rhombus. Its diagonals AC and BD intersected at the point M and satisfy BD 2 AC . If the points D and M represent the complex numbers 1 i and 2 i respectively, then find the complex numbers representing A . [1993] 15. Suppose z1 , z2 , z3 are the vertices of an equilateral triangle inscribed in the circle z 2 . If z1 1 i 3 then find z2 and z3 . 16. [1994] If A1 , A2 ,....., An be vertices of an n sided polygon such that 1 1 1 . Show that n 7 . A1 A2 A1 A3 A1 A4 [1994] 17. If iz 3 z 2 z i 0 then show that z 1 [1995] 18. If z 1, w 1, show that z w ( z w ) 2 ( Arg z Arg w) 2 . [1995] 19. Find all non-zero complex numbers z satisfying z iz 2 . 20. Show that 1.(2 ω)(2 ω2 ) 2.(3 ω)(3 ω2 ) .... (n 1)(n ω)(n ω2 ) 2 1 2 n [(n 1) 2 n] where ω is an imaginary cube root of unity. 4 22. [1996] Let bz bz c, b 0, be a line in the complex plane, where b is the complex conjugate of b . If a point z1 is reflection of a point z2 through the line, then show that c z1b z2b . [1997] 23. Let z1 and z2 be roots of the equation z 2 pz q 0 where co-efficient p and q may be complex numbers. Let A and B represent z1 and z2 in the complex plane. If AOB α 0 α . 2 and OA OB, where O is the origin, prove that p 2 4q cos 2 n 1 24. Prove that (n k ) cos k 1 25. 2kπ n , where n 3 is on integer. n 2 [1997] [1997] For complex numbers z and w , prove that z w w z z w if and only if z w or zw 1 . 2 2 11 [1999] 26. Let a complex number α, α 1 , to be root of the equation z p q z p z q 1 0, where p, q are distinct primes. Show that either 1 α α 2 ... α p 1 0 or 1 α α 2 ... α q 1 0 but not both together. [2000] 27. If z1 and z2 are two complex numbers such that z1 1 z2 then prove that 1 z1 z2 1. z1 z2 [2003] 28. Prove that there exists no complex number z such the z 1 and 3 n a z r 1 r r 1 where ar 2 . [2003] 29. If one vertices of square circumscribing the circle z 1 2 is 2 3i . Find the affixes of other vertices of the square. 30. [2005] If cos α cos β cos γ 0 sin α sin β sin γ . Then prove that cos 3α cos 3 β cos 3γ 3cos(α β γ) . 31. [Roorkee-1985] What is the mistake in computation of 1 1 (1)(1) 1 1 i i 1 [Roorkee-1987] 32. Let A & B be two complex numbers such that A B 1, then prove that the origin and the B A two points represented by A & B from vertices of an equilateral triangle. 33. For every real value of a 0 , determine the complex numbers which will satisfy the equation : z 2iz 2a (1 i ) 0 . 2 34. [Roorkee-1990] Find the range of real number α for which the equation z α z 1 2i 0; z x iy has a solution. Find the solution. 35. [Roorkee-1991] Find the equations in complex variables of all the circles which are orthogonal to : z 1 and z 4 . 36. [Roorkee-1989] [Roorkee-1992] Find the complex numbers z which simultaneously satisfy the equations : z 12 5 z4 1. and z 8i 3 z 8 [Roorkee-1993] 37. Use Demoivre’s theorem to solve equation 2 2 x 4 ( 3 1) i( 3 1) 38. & z 3 i 3 . [Roorkee-1995] Find the complex numbers z for which arg 2 z 8 6i 4 12 3z 6 3i π [Roorkee-1994] 39. Find all complex numbers satisfying the equation 2 z z 2 5 i 3 0 40. k 2qπ 2qπ Evaluate : (3 p 2) sin i cos 11 11 p 1 q 1 41. If α e2 π / 7 and f ( x) A0 2 32 20 A k k 1 p [Roorkee-1997] x k then find the value of f ( x) f (αx) .... f (αx) independent of α . 42. [Roorkee-1996] [Roorkee-1999] 2π 2π i sin , n a positive integer, find the equation whose roots 2n 1 2n 1 Given z cos are α z z 3 .... z 2 n 1 and β z 2 z 4 .... z 2 n [Roorkee-2000] ANSWERS 1. x 3, y 1 12. 2 3, 2 3 15. z2 2, z3 1 i 3 19. 31. The formula 33. a (1 1 a 2 2a )i, 0 a 2 1 z ( 2 1) i , a 2 1 , a 2 1 nosolution 34. No solution for α 3 1 i, i 4 2 21. 14. i 3i 3 ,1 2 2 7 29. (1 3), ( 3 1) i a b ab is applicable only when at least one a & b is positive. 5 a 2 α 2 (5 4α 2 ) 5 ,z 2i, α , 1 , 2 2 α 1 2 α 2 α 2 (5 4α 2 ) 2i, α (0,1), α2 1 z α 2 α 2 (5 4α 2 ) 2i, α (1, 0), α2 1 z 5 5 2i if α 1 and no solution for α 1, . 2 2 35. z 7 iβ (48 β 2 ), β R 37. x cos z 36. rπ rπ i sin , r 5, 29,53, 77 . 48 48 13 6 8i or 6 17i 38. 4 2 4 2 4 i 1 and 4 i 1 5 5 5 5 39. 6 1 1 3 i ; i 2 6 2 2 40. 48(1 i ) 41. 7( A0 A7 x 7 A14 x14 ) 42. 1 π z 2 z sec 2 4 2n 1 14