Download Derivatives of Trigonometric Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Trigonometric functions wikipedia , lookup

Transcript
Chapter 3.5
Derivatives of Trigonometric
Functions
Objectives
β€’ Use the rules for differentiating the six basic
trigonometric functions.
Learning Target
β€’ 80% of the students will be able to calculate
the derivative of csc π‘₯.
Standard
G-C.4
Construct a tangent line from a point
outside a given circle to the circle.
Overview
β€’
β€’
β€’
β€’
β€’
Derivative of the Sine Function
Derivative of the Cosine Function
Simple Harmonic Motion
Jerk
Derivatives of Other Basic Trigonometric
Functions
Periodic Motion
β€’ Many phenomena are periodic.
β€’ Sound
β€’ Light
β€’ Ocean waves
β€’ Tides
β€’ Tsunamis
β€’ Earthquakes
β€’ Heart rates
Derivative of sin π‘₯
𝐬𝐒𝐧𝒙
𝒅/𝒅𝒙 𝐬𝐒𝐧𝒙
𝐬𝐒𝐧 𝒙
𝒙
cos 𝒙 βˆ’ 𝟏
𝒙
1
0
-1
Derivative of sin π‘₯
Let 𝑦 = sin π‘₯
𝑑𝑦
sin π‘₯ + β„Ž βˆ’ sin π‘₯
= lim
𝑑π‘₯ β„Žβ†’0
β„Ž
sin π‘₯ cos β„Ž + cos π‘₯ sin β„Ž βˆ’ sin π‘₯
= lim
β„Žβ†’0
β„Ž
sin π‘₯ cos β„Ž βˆ’ 1 + cos π‘₯ sin β„Ž
= lim
β„Žβ†’0
β„Ž
cos β„Ž βˆ’ 1
sin β„Ž
= lim sin π‘₯ βˆ™ lim
+ lim cos π‘₯ βˆ™ lim
β„Žβ†’0
β„Žβ†’0
β„Žβ†’0
β„Žβ†’0 β„Ž
β„Ž
= sin π‘₯ βˆ™ 0 + cos π‘₯ βˆ™ 1
= cos π‘₯
Derivative of sin π‘₯ and cos π‘₯
𝑑
sin π‘₯ = cos π‘₯
𝑑π‘₯
𝑑
cos π‘₯ = βˆ’ sin π‘₯
𝑑π‘₯
The sine and cosine functions are differentiable.
Continuous over their domains.
Also true of the other basic trigonometric
functions
Using Degrees
Example 1
a) Find the derivative of 𝑦 = π‘₯ 2 sin π‘₯.
𝑑𝑦
𝑑
𝑑 2
2
=π‘₯ βˆ™
sin π‘₯ + sin π‘₯
π‘₯
𝑑π‘₯
𝑑π‘₯
𝑑π‘₯
= π‘₯ 2 cos π‘₯ + 2π‘₯ sin π‘₯
b)
Find the derivative of 𝑒 =
cos π‘₯
1βˆ’sin π‘₯
𝑑
𝑑
1 βˆ’ sin π‘₯
cos π‘₯ βˆ’ cos π‘₯
1 βˆ’ sin π‘₯
𝑑𝑒
𝑑π‘₯
𝑑π‘₯
=
𝑑π‘₯
1 βˆ’ sin π‘₯ 2
1 βˆ’ sin π‘₯ βˆ’ sin π‘₯ βˆ’ cos π‘₯ 0 βˆ’ cos π‘₯
=
1 βˆ’ sin π‘₯ 2
βˆ’ sin π‘₯ + sin2 π‘₯ + cos 2 π‘₯
=
1 βˆ’ sin π‘₯ 2
1 βˆ’ sin π‘₯
1
=
=
2
1 βˆ’ sin π‘₯
1 βˆ’ sin π‘₯
Exercise 1
Find the derivative of
a) 𝑦 = 3π‘₯ + π‘₯ tan π‘₯
b) 𝑦 =
cos π‘₯
1+sin π‘₯
Example 2
Simple Harmonic Motion
A weight hanging from a spring is stretched 5 units below its rest
position (𝑠 = 0) and released at 𝑑 = 0 to bob up and down. Its
position at any time t is 𝑠 = 5 cos 𝑑.
What are its velocity and acceleration at t?
Solution
β€’ Position
𝑠 = 5 cos 𝑑
β€’ Velocity
𝑑
𝑣=
5 cos 𝑑 = βˆ’5 sin 𝑑
𝑑𝑑
β€’ Acceleration
𝑑𝑣
𝑑
π‘Ž=
=
βˆ’5 sin 𝑑 = βˆ’5 cos 𝑑
𝑑𝑑 𝑑𝑑
𝒔 = πŸ“ 𝐜𝐨𝐬 𝒕
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
𝒗 = βˆ’πŸ“ 𝐬𝐒𝐧 𝒕
𝒂 = βˆ’πŸ“ 𝐜𝐨𝐬 𝒕
Exercise 2
A body is moving in simple harmonic motion
with position 𝑠 = cos 𝑑 βˆ’ 3 sin 𝑑.
1. Find its velocity, speed, and acceleration at
time t.
2. Find its velocity, speed, and acceleration at
time 𝑑 = πœ‹ 4.
Jerk
β€’ Not the boyfriend who dumped you.
β€’ Sudden change in acceleration.
β€’ The 3rd derivative of position.
Definition
Jerk is the derivative of acceleration. If a body’s
position at time t is given by 𝑠 𝑑 ,
π‘‘π‘Ž 𝑑 3 𝑠
𝑗 𝑑 =
= 3.
𝑑𝑑 𝑑𝑑
Example 3
1. The jerk caused by the acceleration of gravity
(𝑔 = 9.8 π‘š 𝑠 2 ) is zero.
𝑑
𝑗= 𝑔=0
𝑑𝑑
We do not experience motion sickness while
sitting in a chair.
Example 3
2. The jerk of the simple harmonic motion of
Example 2 is,
π‘‘π‘Ž
𝑑
𝑗=
=
βˆ’5 cos 𝑑
𝑑𝑑 𝑑𝑑
= 5 sin 𝑑
Greatest magnitude when body at equilibrium
position (sin 𝑑 = ±1) where acceleration is
zero.
Exercise 3
A body is moving in simple harmonic motion
with its position given by,
𝑠 𝑑 = 2 + 2 sin 𝑑
Find the jerk at time t.
Other Trigonometric Functions
sin π‘₯
tan π‘₯ =
cos π‘₯
𝑑
tan π‘₯ = sec 2 π‘₯
𝑑π‘₯
1
csc π‘₯ =
sin π‘₯
𝑑
csc π‘₯ = βˆ’ csc π‘₯ cot π‘₯
𝑑π‘₯
1
sec π‘₯ =
cos π‘₯
cos π‘₯
cot π‘₯ =
sin π‘₯
𝑑
sec π‘₯ = sec π‘₯ tan π‘₯
𝑑π‘₯
𝑑
cot π‘₯ = βˆ’ csc 2 π‘₯
𝑑π‘₯
Example 4
Find the equations of the lines that are tangent
and normal to
tan π‘₯
𝑓 π‘₯ =
π‘₯
at π‘₯ = 2. support graphically.
Exercise 4
Find the equations of the lines that are tangent
and normal to the graph of 𝑦 = sec π‘₯ at π‘₯ =
πœ‹ 4.
Example 5
Find 𝑦 β€²β€² if 𝑦 = sec π‘₯.
𝑦 = sec π‘₯
𝑦 β€² = sec π‘₯ tan π‘₯
𝑑
𝑦 β€²β€² =
sec π‘₯ tan π‘₯
𝑑π‘₯
𝑑
𝑑
= sec π‘₯
tan π‘₯ + tan π‘₯
sec π‘₯
𝑑π‘₯
𝑑π‘₯
= sec π‘₯ sec 2 π‘₯ + tan π‘₯ sec π‘₯ tan π‘₯
= sec 3 π‘₯ + sec π‘₯ tan2 π‘₯
Exercise 5
Find 𝑦 β€²β€² if 𝑦 = πœƒ tan πœƒ.
Homework
p 146: 3-33 odd, 35, 37, 43