Download Types 1 and 2 Diabetes: A Comparison and Contrast

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Gemigliptin wikipedia , lookup

Glucose meter wikipedia , lookup

Artificial pancreas wikipedia , lookup

Baker Heart and Diabetes Institute wikipedia , lookup

Transcript
Types 1 and 2 Diabetes: A Comparison and Contrast
By Rheem Gazwa
Diabetes mellitus is a condition in which the pancreas no longer produces enough
insulin or when cells stop responding to the insulin that is produced so that glucose in
the blood cannot be absorbed into the cells of the body. Diabetes can be classified
according to two types; Type 1 and Type 2 diabetes. In the United States, diabetes
almost causes 200,000 deaths every year ("Diabetes", 2001). Type 1 diabetes, also
known as insulin-dependent diabetes mellitus (IDDM), usually affects people who are
under 30. In contrast, type 2 diabetes, also called non-insulin dependent diabetes
mellitus (NIDDM), affects people who are usually over 40 (Thomas, 1997). Type 1
diabetes may account for five to ten percent of all diagnosed cases of diabetes,
including 11,000 to 12,000 children who suffer each year. On the other hand, type 2
diabetes may account for 90 to 95 percent of all diagnosed cases of diabetes (Karam &
Masharani, 2002). A comparison of types 1 and 2 diabetes reveals major similarities
and differences in causes, symptoms, complications, and treatment.
Type 1 diabetes is similar to type 2 diabetes in that they are genetic diseases. Recently,
researchers have been attempting to locate the genes for diabetes. The Human
Genome Project has isolated 18 genes that appear to be involved in the production of
type 1 diabetes. Not all of these genes have equal potency. Two of them appear to be
most potent, some others are least potent, and others are simply auxiliary or helper
genes that seem to have some assisting effect in the process. There are also genes
which are protective so that one might inherit the genes for diabetes, but if the person
also inherits the protective genes, he/she will not develop the disease. Thus,
development of the disease is not 100 percent in those who have inherited the genes for
the diseases. Those people may have the gene but may either have protector genes or
may be fortunate enough to avoid environmental stimuli. Moreover, there are
probably multiple genes involved in type 2 diabetes. For whatever reason, this genetic
factor can interact with some environmental factor such as obesity and excess caloric
intake. When the person eats, food turns into sugar in the stomach and intestines, and
it enters the bloodstream, where it is carried to the body cells. Insulin, which is a
hormone made in the pancreas, is needed to help the sugar to enter the cells. Insulin is
like a key, opening up the cell so it can let sugar in. After entering the cell, the sugar is
used for energy. Like type 1 diabetes, type 2 diabetes is dependent on the amount of
insulin produced by the pancreas. In type I diabetes the pancreas makes no insulin or
an extremely small amount of it ("Type 1 Diabetes", 2002). On the other hand, in type 2
diabetes, the body neither uses its insulin effectively, nor does it produce enough
insulin.
In addition to causative agents, the two types of diabetes can be compared and
contrasted according to their symptoms. Symptoms of type I diabetes are the result of
high blood sugar (glucose) whereas symptoms of type 2 diabetes are caused by the
body’s response to high blood sugar level. Moreover, symptoms of type I diabetes
usually develop quickly, over a few days to weeks, while in type 2 diabetes, symptoms
often are not present in the early stages of this disease. Patients who have diabetes
types 1 or 2 diabetes may experience similar symptoms, such as increased urination,
thirst, and weight loss (Kuzuya, 2000). However, the two types of diabetes can differ
in some symptoms. For example, type 1 diabetes symptoms include pain, vomiting,
and rapid breathing. In contrast to type 1 diabetes, type 2 diabetes symptoms include
slow healing of skin and blurred vision.
The third aspect for comparison and contrast is complications. Both types 1 and 2
diabetes have similar complications, for example, poorly controlled diabetes may
accelerate the development of kidney failure. Moreover, urinary tract infections in
diabetes tend to be more severe and may result in kidney damage. Another
complication is the eye disease diabetic retinopathy, which is a disorder involving a
change in the small blood vessels which can lead to blindness. Diabetics are also more
likely than non-diabetics to develop cataracts. In addition, the two types of diabetes
can be contrasted in some complications. For example, type 2 diabetes may increase
the risk of the heart disease. People with type 1 diabetes may develop temporary or
permanent damage to nerve tissue. Neuropathy is more likely to develop if blood
glucose is poorly controlled. Some diabetics will not develop neuropathy while others
may develop this condition relatively. In type 2 diabetes, complications include heart
attack, chest pain (angina), high blood pressure, stroke, and narrowing of the arteries
(atherosclerosis).
The fourth consideration is treatment. Both types 1 and 2 are similar in that the
treatment should control the amount of glucose in the body by means of a balanced
diet and exercise. The patient should follow a diet that contains more vegetables, fruit,
and whole grains, which are high in nutrition and low in fat and calories. Also, he/she
should eat fewer animal products and sweets. There are many advantages for this
diet. For example, it keeps the blood glucose as near to normal as possible and
decreases or possibly prevents the development of diabetes-related health problems.
Moreover, regular exercise is very useful for the person with diabetes. It helps control
the amount of sugar in the blood and helps burn excess calories and fat to achieve
optimal weight. While type 1 diabetes should be basically treated by taking insulin
injections every day to survive, type 2 diabetes can be treated by oral medications. In
type 1 diabetes, the injections are needed from one to four times a day. People are
taught how to give the insulin injections by their health care provider or a diabetes
nurse educator. When the person with type 2 diabetes cannot achieve normal or nearnormal blood glucose levels with diet and exercise, medication is added to the
treatment plan. A person with diabetes may require oral agents. These medications
work by triggering the pancreas to make more insulin. Another type of oral
medication work by telling the liver to decrease its production of glucose in the blood
stream. A third type of pill works by decreasing the adsorption of carbohydrates from
the digestive track, thereby lowering the after-meal glucose levels. Finally, a fourth
medication can be used that triggers the pancreas to make more insulin in response to
how much glucose is in the blood.