Download AP Statistics Formula Sheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AP Statistics Formula Sheet
(I) Descriptive Statistics
x
x
i
n
sx 
1
( xi  x ) 2

n 1
sp 
(n1  1) s12  (n2  1) s22
(n1  1)  (n2  1)
yˆ  bo  b1 x
 ( x  x )( y  y )
 (x  x)
b1 
i
i
2
i
bo  y  b1 x
r
 xi  x  yi  y 
1




n  1  s x  s y 
b1  r
sy
sx
 ( y  yˆ )
i
sb1 
2
i
n2
 ( xi  x ) 2
(II) Probability
P(A  B) = P(A) + P(B) – P(A ∩ B)
P(A | B) =
E(X) =
P( A  B)
P( B)
 x   xi p i
 x2   ( xi   x ) 2 pi
Var(X) =
If X has a binomial distribution with
Parameters n and p, then:
n k
n–k
P(X = k) =   p (1 – p)
k
 
µx = np
 x  np(1  p)
 pˆ  p
p (1  p )
n
 pˆ 
If x is the mean of a random sample of size n from an infinite population with mean µ and standard
deviation σ, then:
x  
x 

n
(III) Inferential Statistics
Standardized test statistic:
statistic – parameter
standard deviation of statistic
Confidence interval: statistic ± (critical value) • (standard deviation of statistic)
Single–Sample
Statistic
Standard Deviation
Of Statistic

n
p (1  p )
n
Sample Mean
Sample Proportion
Two–Sample
Statistic
Standard Deviation
Of Statistic
 12
Difference of
sample means
n1

 22
n2
Special case when  1   2

Difference of
sample proportions
1 1

n1 n2
p1 (1  p1 ) p 2 (1  p2 )

n1
n2
Special case when p1 = p2
p(1  p)
(observed  exp ected ) 2
Chi-square test statistic = 
exp ected
1 1

n1 n2
Related documents