Download Chapter 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solutions to FE Problems
Chapter 3
3FE-1 Find Vo in the circuit in Fig. 3PFE-1.
The correct answer is a.
A
6
2
1
I1
I

12V
2
Vo

KCL at node A: I1  I  I 2
I  I1  I 2
KVL around the left loop:
12  2I1  1( I )  2I
12  2I1  1( I1  I 2 )  2( I1  I 2 )
12  5I1  3I 2
KVL around the right loop:
6  6I 2  2I  1( I )
6  6I 2  3( I1  I 2 )
6  9I 2  3I1
Two equations and two unknowns:
12  5I1  3I 2
6  3I1  9I 2
Therefore, I1  3.5 A and I 2  1.833A
V0  2I  2( I1  I 2 )  2(3.5  1.833)
V0  3.33V
I2
6V
3FE-2 Determine the power dissipated in the 6-ohm resistor in the network in
Fig. 3PFE-2.
The correct answer is d.
V1
V2
4
I1
12V
V1  12V
KCL at node 2:
V2  V1 V2 V2


 2I1
4
6 12
V  V2
I1  1
4
V2  V1 V2 V2
 V  V2 


 2 1

4
6 12
 4 
3V2  3V1  2V2  V2  6V1  6V2
12V2  9V1
12V2  9(12)
V2  9V
V 2 92
P6  2 
 13.5W
6
6
6
text
2I 1
12
3FE-3 Find the current Ix in the 4-ohm resistor in the circuit in Fig. 3PFE-3.
The correct answer is b.
12V
3
I1
6
2A

Vx
I2
4

I2  I x  I3
I x  I2  I3
I1  2  I 2
I 2  I1  2
12  6I1  4I x
12  6 I1  4( I 2  I 3 )
12  6I1  4I 2  4I 3
KVL around the right loop:
2Vx  4( I x )  3I 3  0
 2Vx  4( I 2  I 3 )  3I 3
 2(4I x )  4( I 3  I 2 )  3I 3
 8( I 2  I 3 )  4I 3  4I 2  3I 3
8I 2  8I 3  4 I 3  4 I 2  3I 3  0
4I 2  I 3  0
I 3  4I 2
12  6I1  4I 2  4(4I 2 )
12  6I1  12I 2
Two equations and two unknowns:
 I1  I 2  2
6I1  12I 2  12
Therefore, I1  6 A and I 2  4 A .
I 3  4(4)  16 A
I x  4  16
+
-
Ix
Vx  4I x
I3
2V x
I x  12 A
3FE-4 Determine the voltage Vo in the circuit in Fig. 3PFE-4.
The correct answer is a.
12V
4
I1
4
2
I3
I2
Ix
KCL: I1  I x  I 2
I x  I1  I 2
KVL around the left loop:
12  4I1  2I x
12  4I1  2( I1  I 2 )
12  6I1  2I 2
KVL around the outer loop:
12  4 I1  4 I 2  4 I 3
I 2  2I x  I 3
2I x  I 2  I 3
2( I1  I 2 )  I 2  I 3
I 3  2I1  3I 2
12  4I1  4I 2  4(2I1  3I 2 )
12  4I1  16I 2
Two equations and two unknowns:
12  6I1  2I 2
12  4I1  16I 2
Therefore, I1  2.45 A and I 2  1.36 A .
I 3  2(2.45)  3(1.36)
I 3  0.82 A
V o 4I 3  4(0.82)
V o 3.28V
text
2I x

4
Vo

3FE-5 What is the voltage V1 in the circuit in Fig. 3PFE-5?
The correct answer is c.
I1
V1
1
V2
I2
V3
2
10V
3
15V
8A
4A
KCL at the supernode: 4  I1  8  I 2
I1  I 2  4
V1 V2  V3

 4
4
2
V1  2V2  2V3  16
V3  15V
V1  2V2  2(15)  16
V1  2V2  14
V2 V1  10
Two equations and two unknowns:
 V1  V2  10
V1  2V2  14
Therefore, V1  2V and V2  8V .
Related documents