Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
THE INCREDIBLE COLLEGE A-LEVEL MOCK EXAMINATION Marker’s Use Only PHYSICS PAPER I Question/Answer Book 1 Time allowed : 3 hours This paper must be answered in English. 2 3 4 5 INSTRUCTIONS 6 1. This section carries 120 marks. 2. Answer ALL questions. 7 8 9 10 Total -1- Useful Formulae in Advanced Level Physics -2- i. Answer ALL questions. ii. Write your answers in the spaces provided in this question/answer book. In calculations you should show all the main steps in your working. iii. Assume : velocity of light in air = 3 108 m s1 acceleration due to gravity = 10 m s2 1. A pendulum bob of mass 200 g is set to whirl in a horizontal circle by a light inextensible string. A hollow glass rob supports the string as shown in Figure 1. The air resistance and the friction between the string and the glass rod are negligible. Figure 1 (a) The bob is moving at a rate of 40 revolution per minute with a radius of 30 cm. (i) Find the angular velocity of the bob and the centripetal force required. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ -3- 1. (a) (Continued) (ii) Sketch a diagram to show all the forces acting on the bob. (2 marks) (iii) Hence determine the tension of the string. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (b) Now the radius of the circle described by the bob is reduced from 30 cm to 20 cm. (i) Find the new moment of inertia of the bob about the glass rod. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Hence determine its new angular velocity. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ -4- 1. (b) (Continued) (iii) Calculate the change in kinetic energy of the bob. Explain briefly. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iv) State the change in the angle of depression of the bob with the horizontal. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 2. An experimental car is fitted on its suspension system with 4 identical springs without shock absorbers. The car is lowered onto the ground and the springs are 10 cm shorter than their unstressed length. The effective mass of the car is 1200 kg. Assume the mass of the car is evenly distributed and the springs obey Hooke’s law. (a) What is the force constant of the spring? (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (b) In a test, the car is forced downwards by a further 8 cm, released and allowed to oscillate. (i) Show that the oscillation of the car is simple harmonic. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ -5- 2. (b) (i) (Continued) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) What is its period of oscillation? (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (c) If the car is loaded with an evenly distributed mass of 300 kg before test, find (i) the new period of oscillation and (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) the maximum amplitude of oscillation which will allow the load to remain in contact with the car throughout the motion. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (d) Shock absorbers are now fitted to the car to damp oscillations. Sketch on the same graph, the displacement-time curves of the car for at least 2 cycles when it undergoes oscillation with and without shock absorbers. (3 marks) -6- 2. (d) (Continued) Displacement Time 3. (a) A stretched string of length 0.3 m produces stationary wave of fundamental frequency f0. Velocity of sound in air is 330 ms1. (i) Sketch the waveform of the wave along the string at fundamental frequency. (1 mark) (ii) Hence find the fundamental frequency f0. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iii) If the mass per unit length of the string is 3 103 kgm1, find the tension in the string. (Given : velocity of propagation of wave along a string = Tension in the string ) (2 marks) Mass per unit length of the string _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ -7- 3. (a) (Continued) (iv) Explain why sounds of the same note produced by two different instruments can be readily distinguished. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (b) A certain machine in a construction site produces a 95 dB intensity level when operating. (i) Find the maximum number of machines that can be operating at the same time in the site if the noise level is not allowed to exceed 100 dB. (3 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Suppose the background produces a noise level of 90 dB. Would the total noise level exceed the noise limit of 100 dB when the number of machines operating in the construction site found in (b)(i) is maximum? (4 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 4. (a) Two whistles of the same frequency, separated by 2 m, are blown simultaneously. An observer moves along a line 50 m away from and parallel to the line joining the whistles. Minima of sound are heard at successive points that are 0.85 m apart. Calculate the frequency of the whistles. (Given : speed of sound in air = 340 ms 1 ) (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ 4. (Continued) -8- (b) Explain why it is unable to observe light interference as in part (a) using two similar and separate light sources, even if the dimensions of the apparatus are suitably modified. (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (c) A laser beam of wavelength 600 nm passes through a double-slit and forms an interference pattern on a screen placed 2 m away. A student finds that the distance between the centres of the 1st bright fringe and the 8th bright fringe is 84 mm. (i) What is the slit separation? (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Explain both qualitatively and quantitatively what will happen to the fringes if a thin transparent sheet of thickness 15 m is placed in front of one of the slits. (Given : refractive index of the sheet = 1.4) (3 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iii) What is the change in the interference pattern if the whole set-up is immersed in water? Explain briefly. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 4. (c) (Continued) (iv) Now the double-slit is replaced by a fine diffraction grating of 600 lines per mm. -9- Determine how many bright lines can be observed on the screen. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 5. (a) Two solid spherical conductors of radii 30 cm and 10 cm respectively are placed a considerable distance apart in vacuum such that the presence of each sphere does not affect the charge distribution on the other. Each sphere carries a charge of 3.0 10 8 C . 1 = 9.0 10 9 N m 2 C 2 ) (Given : 40 (i) Find the electric field strength and the electric potential at the surface of each sphere. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Now the two spheres are joined by a thin conducting wire. A re-distribution of charge between the two spheres occurs. Determine the value of charge on each sphere. (4 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 5. (Continued) - 10 - (b) Figure 5.1 (i) Figure 5.2 Figure 5.1 shows a potentiometer circuit. The potentiometer wire AB is of length 1 m. The e.m.f. of the battery M is 9 V. A balance point is obtained at 27 cm from A when a standard cell of e.m.f. 1.8 V is connected across PQ. (1) What is the maximum e.m.f. that can be measured by the potentiometer? (1 mark) _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ (2) What is the function of the rheostat R in the circuit in Figure 5.1 ? (1 mark) _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ (ii) Now, the standard cell is disconnected and a cell E, which is in parallel with a 20 resistor and a switch K shown in Figure 5.2, is connected across PQ. A balance point is obtained at 30 cm from A when K is opened , and 25 cm from A when K is closed. Calculate the e.m.f. of the cell E and its internal resistance. (4 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 6. (a) State the laws of electromagnetic induction. - 11 - (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (b) MN and PQ are two smooth horizontal rails which are 0.5 m apart and of negligible electrical resistance. Two resistors, each of resistance 2 , are connected across MP and NQ to form a rectangular loop. A uniform magnetic field of intensity B = 2.0 T, pointing into the paper, is set up in the region MNQP. A smooth metal rod XY of resistance 1 is pulled along the rails by a constant horizontal force F 0.2 N as shown in Figure 6. The rod attains a terminal speed v eventually. X M 2 N B F 2 P Q Y Figure 6 (i) Account for the motion of the rod XY. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 6. (b) (Continued) - 12 - (ii) Determine the direction of the induced current in the rod XY. (1 mark) _________________________________________________________________ _________________________________________________________________ (iii) When it has reached its terminal speed v, determine (1) the induced current I in the rod XY, (1 mark) _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ (2) the induced e.m.f. in the circuit, and (2 marks) _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ (3) the terminal speed v. (1 mark) _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ (iv) Calculate the mechanical power developed by the applied force and the total power loss through the resistors at the instant. Comment on the results. (3 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 7. A circuit with a NPN transistor is shown in Figure 7.1. The currents pass through resistor R1, R2 and RL are I1, I2 and IL respectively. It is given that R1 = 500 k, R2 = 85 k, - 13 - RL = 3.5 k, Vin = 6 V, VBE = 0.7 V and VCC = 6 V. VBE Figure 7.1 (a) Determine (i) the value of I2 by considering the p.d. across R2, (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) the value of I1, (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iii) the value of base current IB, (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (b) If the current gain is 100, determine (i) the value of IL, (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) the value of Vout, (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 7. (Continued) (c) Is there any problem in the above configuration when the input voltage is varied? - 14 - (1 mark) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (d) What is the suitable value of RL so that the circuit can be operated with output at maximum symmetrical swing and not easily to be saturated? (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (e) After the resistor mentioned in part (d) has been installed, an input voltage Vin is applied to the circuit. If the input voltage has the form as shown in Figure 7.2, sketch the output voltage versus time in the space provided below. (2 marks) Figure 7.2 Vout t 8. (a) A frame of negligible mass is attached to a copper wire of length 1 m and cross-sectional area 0.3 mm2. The Young modulus of copper is 1.1 1011 Nm2. A - 15 - block of mass 5 kg is raised to a height h = 80 cm and dropped onto the frame, it rebounds to a height of 20 cm, producing a temporary extension and stress in the wire. Figure 8.1 (i) Find the velocities of the block just before and after impact. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) If the block is in contact with the frame for 0.2 second, find the total resultant force on the frame during the impact. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iii) Determine the stress produced. (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 8. (a) (Continued) (iv) Determine the extension produced. - 16 - (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (v) If the copper wire is replaced by a metal wire of double cross-sectional area and double Young modulus, what will be the extension compared with that in (b)(iv) if the same block is dropped onto the frame from the same height? (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (b) Consider two identical atoms, initial separation, being brought closer together. The potential energy (of either atom) is given by A B U= + 6 12 r r where r is the separation between the two atoms. (i) dx n nx n 1 ) dx (1 mark) _________________________________________________________________ Find the expression of the force F in terms of A and B. (Hint : _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Determine the equilibrium separation of the atoms. (Given : A 1.565 10 79 J m 6 and B 4.372 10 137 J m12 ) (1 mark) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ k where r0 is the equilibrium separation r0 and k is the force constant between two atoms. If k is equal to the minus slope of F-r graph at equilibrium separation, find the Young modulus of the solid. (2 marks) _________________________________________________________________ (iii) Young modulus can be expressed as E = _________________________________________________________________ 8. (b) (iii) (Continued) _________________________________________________________________ - 17 - _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (iv) When atoms are gradually moved apart, at what separation will the atomic interaction be broken down? (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 9. In the X-ray tube as shown in Figure 9.1, the accelerating voltage is 100 kV. X-rays are produced when the tungsten target is bombarded by fast moving electrons. The X-ray spectrum is shown in Figure 9.2. (Given : h = 6.63 1034 Js, e = 1.6 1019 C and c = 3.0 108 ms1) Figure 9.1 Figure 9.2 (a) Calculate the kinetic energy, in J, of the electrons before they hit the target? (2 marks) _____________________________________________________________________ _____________________________________________________________________ 9. (a) (Continued) _____________________________________________________________________ - 18 - _____________________________________________________________________ _____________________________________________________________________ (b) Suppose there are 3.751016 electrons striking the target per second. What must be the power P supply to X-ray tube? (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (c) A student says that this power is transferred to the electrons from the heat of the cathode. Do you agree with the student? Explain briefly. (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (d) Suppose the kinetic energy of an electron is completely transferred to a target atom, find the minimum wavelength 0 of the X-ray photon. (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ (e) Sketch on Figure 9.2 to show how X-ray spectrum is changed by reducing the accelerating voltage to one-half. (2 marks) (f) Suggest TWO criteria for the choice of the target material. Give reasons to support your answer. (2 marks) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ 10. (a) In a Rutherford scattering experiment the gold target ( 197 79 Au ) is bombarded by -particles. One of the -particles happens to collide head-on with a target nucleus - 19 - which remains at rest all the time. (i) Find the minimum distance of approach of the -particle if its kinetic energy is 1 6.5 10 13 J . (Given : = 9.0 10 9 N m 2 C 2 and e 1.6 10 19 C ) 40 (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (ii) Write down an approximate value for the ratio of atomic radius of gold to its nuclear radius. Hence estimate the density of the nucleus of a gold atom. (Given : atomic radius of gold is 1.44 10 10 m and density of gold is (3 marks) 19.3 103 kg m 3 ) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (b) 1 cm3 of liquid containing 24 Na atoms is injected into the blood stream of a dog. The initial activity of the 24 Na sample is 3000 Bq. Five hours later, 1 cm3 of blood is taken out of the dog's body and at that instant the activity of this sample is found to be 10 Bq. (Given : half-life of 24 Na = 15 hours) (i) Calculate the initial number of 24 Na atoms. (2 marks) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 10. (b) (Continued) (ii) Find the volume of the blood inside the dog. State your assumptions. (4 marks) - 20 - _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ (c) State TWO uses of radioisotopes. (1 mark) _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ END OF PAPER - 21 -