Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Statistics Formulas R = H – L Range MR LH 2 Midrange ML n 1 2 Median Locator x x s 2 i Sample Mean n x x 2 i Definition of Sample Variance n 1 x x n 2 s2 i 2 i Calculating Formula for Sample Variance n 1 s s2 Definition of Sample Standard Deviation x x n 2 s i 2 i n 1 xnew a bx z x Calculating Formula for Sample Standard Deviation Linear Transformation x = σz + IQR = Q3 – Q1 z-score Interquartile Range Probability P(AC) = 1 – P(A) Complement Rule P(A or B) = P(A) + P(B) – P(A and B) P(A and B) = P(A)P(B|A) P(A and B) = P(B)P(A|B) P( B | A) P( AandB) P( A) Addition Rule Multiplication Rule Multiplication Rule Conditional Probability Binomial Distribution n p( x) p x (1 p) n x , x = 0, 1, …, n x pˆ x2 ~ p is Wilson’s Estimate n4 x is the sample proportion n x Sampling Distributions of Parameter Estimator and p̂ Mean Of Estimator x X np(1 p) X = np Standard Deviation of Estimator X z-score z n x n p p̂ p(1 p) n p z pˆ p p (1 p ) n Inference Formulas Parameter Confidence Interval xz * Test Statistic z n x o n s , df n 1 n x t p ~ p (1 ~ p) * ~ pz n4 * t z x o , df n 1 s n pˆ p0 p0 (1 po ) n Sample Size Determination Formulas Parameter Formula z * n m p 2 2 z* * n 4 p (1 p * ) m z Tests Research Hypothesis P-value Rejection Region Ha: > o P(Z > z) Z > zα Ha: < o P(Z < z) Z < -zα Ha: o 2P(Z > |z|) Z < -zα/2 or Z > zα/2 Ha: p < po P(Z < z) Z < -zα Ha: p > po P(Z > z) Z > zα Ha: p po 2P(Z > |z|) Z < -zα/2 or Z > zα/2 t Tests Research Hypothesis P-value Rejection Region Ha: > o P(T > t) t > tα Ha: < o P(T < t) t < -tα Ha: o 2P(T > |t|) t < -tα/2 or t > tα/2