Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
UNIT 2 : POWERS 2.1 What’s a power? It is a number obtained by multiplying a number by itself a certain number of times 2X2X2X2X2X2 . We have 2 multiplied by itself six times, so we can write it in exponential notation. 2X2X2X2X2X2= 2 6 2 is the base and 6 is the exponent. The value of 2 6 = 64 Be careful ! 2 6 2x6 Exercise: Index or Exponent READ AS EXTENDED VALUE Four squared or Four to the power of two 4x4 16 BASE NUMBER 4 5 2 3 10 4 Five cubed or Five to the power of three Ten to the power of four 5x5x5 10x 10x10x10 125 10.000 63 16 Seven cubed or 2x2x2x2x2 8x8 Two to he power of six 2.2. Powers of 10 "Powers of 10" is a very useful way of writing down large or small numbers. Instead of having lots of zeros, you show how many powers of 10 will make those many zeros Example: 5.000 = 5 × 1.000 = 5 × 103 5 thousand is 5 times a thousand. And a thousand is 103. So 5 times 103 = 5.000 Can you see that 103 is a handy way of making 3 zeros? Scientists and Engineers (who often use very big or very small numbers) like to write numbers this way. It is commonly called Scientific Notation, or Standard Form. Example: The Mass of the Sun The Sun has a Mass of 1,988 × 1030 kg. It would be too hard for scientists to write 1.988.000.000.000.000.000.000.000.000.000 kg (And very easy to make a mistake counting the zeros!) The Trick While at first it may look hard, there is an easy "trick": The index of 10 says ... ... how many places to move the decimal point to the right. Example: What is 1.35 × 104 ? You can calculate it as: 1,35 x (10 × 10 × 10 × 10) = 1,35 x 10.000 = 13.500 But it is easier to think "move the decimal point 4 places to the right" like this: 1,35 13,5 135 1350 13500 Exercise: a) Write 3,76 × 104 as an ordinary number b) Write 718.000 in Scientific notation 2.3 Laws of Powers ( Rules of Powers) Law · an = am+n am/an = am-n (am)n = am· n am · bm = (a · b) m an:bn = (a:b)n am Example · 33 = 32+3 = 35 26/22 = 26-2 = 24 (42)3 = 42×3 = 46 23· 33 = (2· 3 )3 = 63 (5:3)2 = 52 : 32 32 ACTIVITIES 1. Write in exponential notation a) 7 · 7 = d) 4 · 4 · 4 · 4 = b) 3 · 3 · 3 · 3 · 3 · 3 = e) 8 · 8 · 8 = c) 10 · 10 · 10 · 10 = f) 2 · 2 · 2 · 2 · 2 · 2 = 2. Complete: m ·m·m m b) x · x x a) e) c) a · a · a = d) …………………….. = b Power 3 Base Exponent 5 m 3 5 4 7 a4 Find the value of : 3. 2 4.Find the missing number: 8 3 2x 4 5 8 x 512 94 15 2 3 x 81 12 3 30 4 a 4 16 20 5 85 2 a 3 1.000 100 3 324 10 x 10.000 a 25 2 2 6 x 36 a 3 125 5. a) Write 4,015 × 105 as an ordinary number. b) The diameter of the Earth is 12.756,2 kilometers. Write it in Scientific Notation. c) Write 7,0678 x 10 as an ordinary number. d) Write 727.000.000.0000 in scientific notation 8 6. Express the result as a power and then find the value: 18 2 : 9 2 6 3 · 53 6 5 : 35 53 · 2 3 2 6 · 56 46 : 26 20 4 : 5 4 16 5 : 8 5 4 3 · 53 15 3 : 5 3 25 3 · 4 3 214 : 3 4 54 · · 24 82 · 52 84 : 44 35 2 : 5 2 7. Express the result as a power: a) ( 2 5 · 35 ) : 6 5 b) ( 6 4 · 34 ) : 9 4 c) ( 80 3 : 83 ) : 53 8. Work out: 3 2 · 35 m7 · m 26 : 22 10 7 : 10 6 1210 : 12 9 x2 · x6 52 · 52 38 : 3 5 a 10 : a 6 k7 · k6 10 5 · 10 2 a · a5 m5 : m x8 : x 4 510 : 5 6 9. Operate: ( 52 )3 ( 25 ) 2 ( x 2 )3 ( 10 3 ) 3 ( a 3 )5 ( 83 ) 7 ( m6 )2 ( x4 )4 ( 7 4 )3 10. Work out: z9 : z9 x8 : x7 a9 : a2 k 12 : k 9 z9 · z x8 · x0 a5 · a5 k3 · k ( z8 )4 ( x3 )2 ( a 5 )3 11. Express the result as a power: 5 · 4 : 2 15 : 5 : 3 36 : 2 · 9 3 3 3 5 5 4 4 3 4 6 3 : 213 : 7 3 2 4 ( k 9 )2 a : a m : m x : x · x 3 4 4 3 · 2 5 : 29 12 9 : 4 7 · 3 7 10 5 3 5 2 2 4 : x3 CHECK YOURSELF 1.Calculate mentally and write in words the following powers: a) 4 3 b) 112 c) 5 3 d ) 10 2 e) 100 3 2. Complete: POWER READ AS Seven to the power of four EXTENDED VALUE 100.000 10 7 64 18 3x3x3x3x3 3. Fill in the missing numbers. a) 7 5 · 7 2 7 e) 912 : 9 2 9 b) 6 6 · 6 8 6 c) 4 3 · 3 4 d ) 54 · · 5 5 i ) 18 2 : 9 2 2 f ) 26 : 2 22 j) 2 6 · 56 g ) 24 7 : 3 24 4 k ) 43 h) 4· 2 : 52 e) 2 3 : 2 7 b) 4 6 4 2 b) 7 6 · 7 2 3 c) x 4 x 3 c) 3 4 5 : 33 4 4 l ) 5 4 · · 2 4 10 4.Express the result as a power: a) a 3 a a 7 6 d) d) a6 a4 a3 a6 a4 · a9 a2