Download Geometry –300

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry 300
Parallelogram Packet
Name________________________
Date__________________
1. In Parallelogram ABCD, A = 9y – 12, B = –26x + 16, C = 60. Find the value of x and y.
B
A
C
D
2. In Parallelogram EFGH, the ratio of E to F is 1:11. Find the measure of G and H.
3. Quadrilateral IJKL has coordinates I(–2, 6) , J(2, 11) , K(3, 8) and L(–1, 3). Show using slopes that
IJKL is a parallelogram.
Geometry 300
Name________________________
Parallelogram Packet
Date__________________
4. Draw parallelogram STAR with diagonals SA and TR . Find the value of x and y if mTSA = 2x,
mSTR = 18, mSRT = 62, mRSA = 3y + 5, and mSAT = 50.
5.
Given: Parallelogram WSTV
WS = x + 5
WV = x + 9
VT = 2x + 1
Find the perimeter of WSTV
6.
W
S
Given: Parallelogram ABCD
m A = x
m D = 3x - 4
Find: mD and mC
V
T
D
A
C
B
7. In parallelogram PWJL. PW= 5x – 3, LJ = 3x + 3. Find x and the measures of sides PW and LJ.
Geometry 300
Parallelogram Packet
Name________________________
Date__________________
8. Use the parallelogram at the right to solve each problem.
E
b) If mBAC = 45°, find mACD
c) If mBEA = 135°, find mAED
C
d) If mABC = 50°, find mBCD
e) If AB = 5x – 3 and CD = 2x + 9, find AB
f) If mDAB = 2x – 10 and mADC = 3x, find mDAB
g) If mBAD = 3x – 12 and mBCD = x + 40, find mBAD
h) If CE = 2x + 7 and EA = 3x – 4, Find CA
i) If BD = 4y – 22 and ED = y + 5, Find BE
A
B
a) If mBCD = 125°, find mBAD
D
Geometry 300
Parallelogram Packet
Name________________________
Date__________________
9. Solve for x and y in the parallelogram below.
3x  2 y
114°
4x  6 y
66°
10. Solve for the value(s) of x in the parallelogram below and then determine the possible side lengths.
2 x 2  3x  20
x 2  2 x  32
11. Solve for the value(s) of x in the parallelogram below and then determine the possible diagonal
lengths.
5x  4
x2  2
Geometry 300
Name________________________
Parallelogram Packet
Date__________________
12. In Parallelogram ABCD, mA = 4 x  11y  10 , mB = 3 y  2 x , mC =  2 y  15 x  5
and mD =  2 x  3 y . Find the values of x and y and mA and mB.
B
A
C
D
13. Quadrilateral ABCD has the following vertices A(-5,-9) , B(6, -11) , C(7, -7) and D(-4, -5)
Prove using the distance formula that this is a parallelogram. In other words, show that the opposite sides
of the quadrilateral are equal and therefore must be a parallelogram.
Related documents