Download 4.3 Right Triangle Trigonomerty

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
4.3 Right Triangle
Trigonometry
Trigonometric Identities
The part of a Right Triangle with
respect to an angle
Adjacent, Opposite and Hypotenuse.
hypotenuse
opposite

adjacent
Trig functions defined using the
parts of the right triangle
Sine, Cosine, Tangent, Cosecant, Secant
and Cotangent
opposite
Sin  
hypotenuse
adjacent
Cos 
hypotenuse
opposite
Tan 
adjacent
hypotenuse
Csc 
opposite
hypotenuse
Sec 
adjacent
adjacent
Cot 
opposite
Sin 60º = Cos 30º
If

< 90º
Sin 90     Cos
Cos90     Sin
Tan90     Cot
Cot 90     Tan
Sec90     Csc
Csc90     Sec
Sin 90     Cos
Cos90     Sin 
Tan90     Cot
Cot 90     Tan
Sec 90     Csc
Csc 90     Sec
Sin 42º= Cos(90º - 42º) = Cos 48º
Trigonometric Identities
Some basic identities
1
1
1
Sin 
 Cos 
Tan 
Csc
Sec
Cot
Sin
Cos
Tan 
 Cot 
Cos
Sin
Trigonometric Identities
Very important identity
sin   cos   1
2
2
And the identities that you can find
1  tan 2   sec 2 
1  cot 2   csc 2 
Angle of elevation or
Angle of depression
Angle of elevation:
the angle it rise from horizontal
Angle of depression:
the angle it drops from horizontal
What is the Angle of elevation
Find 
2miles

8miles
Find 
6 ft
2.5 ft

Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
sin 2 
cos 2 


sin  cos  sin  cos 
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
sin 2 
cos 2 


sin  cos  sin  cos 
sin 2   cos 2 

sin  cos 
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
sin 2 
cos 2 


sin  cos  sin  cos 
sin 2   cos 2 

sin  cos 
1

sin  cos 
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
sin 2 
cos 2 


sin  cos  sin  cos 
sin 2   cos 2 

sin  cos 
1

sin  cos 
1
1


sin  cos 
Prove a Trigonometric Identity
Work only on one side
tan   cot   csc sec
sin  cos 


cos  sin 
sin 2 
cos 2 


sin  cos  sin  cos 
sin 2   cos 2 

sin  cos 
1

sin  cos 
1
1


sin  cos 
csc sec  csc sec
Homework
Page 287- 290
# 3, 9, 15, 18,
21, 25, 31, 36,
40, 46, 48, 51,
55, 57, 61, 66,
71, 74, 82, 86
Homework
Page 287- 290
# 6, 12, 17, 20,
24, 28, 34, 37,
44, 47, 50 54,
56, 60, 65, 68,
72, 75, 84
Related documents