* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 1) What is the net charge on a charged capacitor
Chemical potential wikipedia , lookup
Potential energy wikipedia , lookup
History of electrochemistry wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Electrostatic generator wikipedia , lookup
Electroactive polymers wikipedia , lookup
Static electricity wikipedia , lookup
Electric charge wikipedia , lookup
Electromotive force wikipedia , lookup
1) What is the net charge on a charged capacitor? ( 1 mark ) View Answer (Q.2) What will happen to the capacity of a parallel plate capacitor if area of each plate is doubled and distance between the plates becomes halved? ( 1 mark ) View Answer (Q.3) What happens to the electric field inside a dielectric when it is placed in an external electric field? ( 1 mark ) View Answer (Q.4) What will be the effect on potential if a medium of dielectric constant K is introduced? ( 1 mark ) View Answer (Q.5) What would be the work done if a point charge +q is taken from a point A to the point B on the circumference of the circle, which is having a +q point charge at the centre? ( 1 mark ) View Answer (Q.6) a) What is the unit of electric flux? b) Is it correct that the capacitance of a spherical conductor is equal to the radius of the conductor in CGS system? ( 1 mark ) View Answer (Q.7) Is electric potential necessarily zero at a point where electric field strength is zero. ( 1 mark ) View Answer (Q.8) Does electric potential increase along electric lines of forces. ( 1 mark ) View Answer A charge Q is distributed over two concentric hollow spheres of radii r and R (> r) such that the surface densities are equal. The potential at the common centre is (A) Zero (B) Q/(R + r) (Q.9) ( 1 mark ) (C) (D) View Answer (Q.10) N small drops of same size are charged to V volt each. If they coalesce to form a single large drop, then its potential will be ( 1 mark ) (A) Vn (B) V n–1 (C) V n1/3 (D) V n2/3 View Answer (Q.11) ( 1 mark ) A lightning conductor affords protection to the building since it (A) Conducts the electric charge to the earth (B) Repels away the charge clouds (C) Diverts back the charge to the adjacent ground (D) Transform back the charge to the clouds. View Answer (Q.12) If we increase separation ‘d’ between the plates of a parallel plate condenser to ‘2d’ and fill wax to the whole empty space between its two plates, then capacitance increases from 1 pF to 2 pF. What is the dielectric constant of wax? ( 1 mark ) (A) 1 (B) 2 (C) 3 (D) 4 View Answer (Q.13) ( 1 mark ) In a charged capacitor, the energy is stored in (A) The negative charges (B) The positive charges (C) The field between the plates (D) Both ‘a’ and ‘b’ View Answer Two spherical conductors A and B of radii a and b (b > a) are placed concentrically in air. B is given a charge + Q and A is earthed. The equivalent capacitance of the system is (Q.14) ( 1 mark ) (A) (B) (C) (D) View Answer (Q.15) ( 1 mark ) We assume that earth is at zero potential because capacitance of the earth is (A) Infinite (B) Zero (C) Can not say (D) 106 Farad View Answer (Q.16) Fill in the blank with suitable option :pan stylElectric field inside a dielectric ——— — when it is placed in an external electric field. (A) Increases (B) Decrease (C) Remains same (D) None of these View Answer ( 1 mark ) (Q.17) ( 1 mark ) Atomic Polarizability has dimension of (A) Area (B) Volume (C) Force (D) Torque View Answer A parallel plate capacitor is located horizontally such that one of the plates is submerged in a liquid while the other is above the liquid surface. When plates are charged the level of liquid (Q.18) ( 1 mark ) (A) Rises (B) Falls (C) Remains unchanged (D) May rise or fall depending on the amount of charge View Answer (Q.19) The capacitors of capacities 3µF, 9µF and 18µF are connected first in series and then in parallel. The total capacity in the two cases in the ratio (C s :Cp) of: ( 1 mark ) (A) 1 : 15 (B) 15 : 1 (C) 1:1 (D) 1 : 3 View Answer A frictionless dielectric slab S is placed on a frictionless table T near a charged parallel plate capacitor C having frictionless plates as shown in the diagram below. The slab is held between them, when the slab is released : (Q.20) ( 1 mark ) (A) It would stay on the table (B) It would be pulled by the capacitor and will move out the other end (C) It would be pulled inside and would come in rest occupying the space in between the plates (D) None of these is true View Answer (Q.21) ( 1 mark ) Increasing the charge on the plates of a capacitor means: (A) Increasing the capacitance (B) Increasing the potential difference between the plates. (C) Decreasing the potential difference between the plates. (D) No change in the field between the plates. View Answer If the potential of a capacitor having capacity 6 mF is increased from 10 V to 20 V, then increase in its energy will be (Q.22) ( 1 mark ) (A) (B) (C) (D) View Answer A parallel plate capacitor is filled with dielectric as shown in Fig. Its capacitance has ratio with that of without dielectric as (Q.23) ( 1 mark ) (A) (K1 + K2) (B) (C) (D) View Answer Consider a parallel plate capacitor of capacity 10 mF with air filled in the gap between the plates. Now one half of the space between the plates is filled with a dielectric of dielectric constant K = 4 as shown in figure. (Q.24) ( 1 mark ) The capacity of the capacitor changes to (A) 25 mF (B) 20 mF (C) 40 mF (D) 5 mF View Answer (Q.25) Two insulated metal spheres of radii 10 cm and 15 cm charged to a potential of 150 V and 100 V respectively, are connected by means of a metallic wire. What is the charge on the first sphere? ( 1 mark ) (A) 2 e.s.u. (B) 4 e.s.u. (C) 6 e.s.u. (D) 8 e.s.u. View Answer A condenser of capacity C1 is charged to a potential V0. The electrostatic energy stored in it is U0. It is connected to another uncharged condenser of capacity C2 in parallel. The energy dissipated in the process is (Q.26) (A) (B) (C) ( 1 mark ) (D) View Answer A finite ladder is constructed by connecting several sections of 2 mF, 4 mF capacitor combinations as shown in the figure. It is terminated by a capacitor of capacitance C. What value should be chosen for C, such that the equivalent capacitance of the ladder between the point A and B becomes independent of the number of sections in between them? (Q.27) ( 1 mark ) (A) 4 mF (B) 2 mF (C) 18 mF (D) 6 mF View Answer (Q.28) A solid conducting sphere having a charge Q is surrounded by an uncharged concentric conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be V. If the shell is now given a charge of – 3Q, the new potential difference between the same two surfaces is ( 1 mark ) (A) V (B) 2V (C) 4V (D) -2V View Answer (Q.29) An electric dipole has the magnitude of its charge as q and its dipole moment is p. It is placed in uniform electric field E. If its dipole moment is along the direction of the field, the force on it and its potential energy are respectively (A) q.E and max. (B) 2 q.E and min. (C) q.E and p.E (D) ( 1 mark ) Zero and min. View Answer A parallel plate capacitor of capacitance C is connected to a battery and is charged to a potential difference V. Another capacitor of capacitance 2C is similarly charged to a potential difference 2V. The charging battery is now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is (A) Zero (Q.30) ( 1 mark ) (B) (C) (D) View Answer A charge +q is fixed at each of the points x = x0, x = 3x0, x = 5x0, .... on X-axis and charge –q is fixed on each of the points x = 2x0, x = 4x0, x = 6x0, .... . Here x0 is a positive constant. Take the potential at a point due to a charge Q at a (Q.31) ( 1 mark ) distance r from it to be . Then the potential at the origin due to above system of charges will be (A) Zero (B) (C) (D) View Answer Identical charges – q each are placed at 8 corners of a cube of each side b. Electrostatic potential energy of a charge ( 1 mark ) + q which is placed at the centre of cube will be (Q.32) (A) (B) (C) (D) View Answer (Q.33) ( 1 mark ) A unit charge moves on an equipotential surface from a point A to point B. Then (A) VA – VB = + ve (B) VA – VB = 0 (C) VA – VB = – ve (D) It is stationary View Answer (Q.34) A condenser having capacity 2 F is charged to 200V potential, its plates are joined to any resistance wires. What is the heat produced? ( 1 mark ) View Answer (Q.35) Two parallel plates are 2 cm apart and a potential difference of 50 V is applied across them. What is the electric filed intensity between the two plates ? ( 1 mark ) (A) -2500 V/m (B) +2500 V/m (C) -1500 V/m (D) +1500 V/m View Answer (Q.36) A potential difference of 250 volt is applied across the plates of a capacitor of 10 pF. What is the charge on the plates of the capacitor? ( 1 mark ) (A) 1.5x10-9 C (B) 2.5x10-9 C (C) 4.2x10-4 C (D) 1.25x105 C View Answer (Q.37) How much energy stored in a capacitor of 100mF when it is charged to a potential of 100 volt. (A) 0.4 joule ( 1 mark ) (B) 0.125 joule (C) 0.5 joule (D) 1 joule View Answer (Q.38) Four metallic plates each with surface area ‘A’ and interplate separation ‘d’ are placed as shown. Alternate plates are connected to points A and B. What is the equivalent capacitance of the system? ( 2 Marks ) View Answer (Q.39) Four capacitors are connected as shown in the fig. What is the equivalent capacitances between A and B? ( 2 Marks ) View Answer (Q.40) If a unit charge is taken from one part to another part over an equipotential surface, then what is the work done on the charge? ( 2 Marks ) View Answer (Q.41) Give the relation between the electric field and potential for closely spaced equipotential surfaces. ( 2 Marks ) View Answer (Q.42) What are equipotential surfaces? ( 2 Marks ) View Answer (Q.43) What principle do we use to find the potential at a point due to a system of charges? ( 2 Marks ) View Answer (Q.44) What is a Vande Graaff Generator? Draw a Vande Graaff generator? ( 3 Marks ) View Answer (Q.45) What happen if an insulating (dielectric) substance is filled between the plates of a capacitor and how its capacitance gets affected? ( 3 Marks ) View Answer (Q.46) What is electrostatic shielding? During thunderstorms it is safer to be inside a car or stand under the tree.Explain your answer. ( 3 Marks ) View Answer (Q.47) In a parallel plate capacitor with air between the plates has an area 6*10 3m2 and the distance between the plates is 6 mm.find the capacitance of the capacitor.if this capacitor is connected to a 200v supply, what is the charge on each plate of the capacitor? ( 3 Marks ) View Answer The electric field at a point due to a point charge is 20Nc-1 and the electric potential at that point is 40jc-1 .Calculate the distance of the point from the charge and the magnitude of the charge. (Q.48) ( 3 Marks ) View Answer A parallel plate condenser with plate area A is filled with two dielectric K1 and K2 each occupying equal space lengthwise. If the separation between two plates is t for each dielectric then what is the capacity of the condenser. (Q.49) ( 3 Marks ) View Answer (Q.50) A parallel plate capacitor having a plate separation 2mm possesses a capacitance of 18PF.The capacitor is connected to a 100v supply.Explain what would happen , if a 2 mm thick mica sheet of dielectric const k=6 were inserted between the plates(a) while the voltage supply remains connected.?(b) after the supply was disconnected. ( 5 Marks ) View Answer (Q.51) What is the potential energy of a dipole placed in an external field? Also give an expression for Torque experienced by the dipole in a uniform electric field. What will be the torque experienced by the dipole if it is in the direction of the electric field? ( 5 Marks ) View Answer (Q.52) A 300PF capacitor is charged by a 200v supply.it is then disconnected from the supply and is connected to another uncharged 300PF capacitor.How much energy is lost in the process? ( 5 Marks ) View Answer (Q.53) Derive the formula for effective capacitance when (i) Capacitors C1 and C2 are connected in series. (ii) Capacitors C1 and C2 are connected in parallel. ( 5 Marks ) What happen to the charge on the capacitor if it is disconnected from the battery? View Answer (Q.54) Differentiate between electrostatic potential and electrostatic potential energy? A metal sphere 0.30 m in radius is positively charged with 2 C. Find the potential at distance 1m from the sphere and at the centre of the sphere. View Answer ( 5 Marks )