• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Learn more. - Navillum Nanotechnologies
Learn more. - Navillum Nanotechnologies

... a specific, pure color, based on its particle size. The smallest Quantum dots emit blue light while the larger ones emit red light. This light emission process is called photoluminescence (PL) or more specifically is called, fluorescence. Because Quantum dots can be made that absorb and emit energy ...
Atomic Term Symbols and Energy Splitting
Atomic Term Symbols and Energy Splitting

On Gauge Invariance and Covariant Derivatives in Metric Spaces
On Gauge Invariance and Covariant Derivatives in Metric Spaces

... differential equations for different fields, we have to introduce additional structures into the spacetime. These structures are known as connection coefficients. They can be introduced in a differential manifold independent of metric [2]. We can construct covariant derivatives in a manifold in term ...
Conservation of Energy in Classical Mechanics and Its Lack from the
Conservation of Energy in Classical Mechanics and Its Lack from the

... described in a way not much different than applied for the body motion in the solar system. The main change which had to be taken into account concerned the fact that a single electron particle in the atom—concretely the hydrogen atom—could assume different but strictly specified energy values calle ...
Atomic Structure and Atomic Spectra
Atomic Structure and Atomic Spectra

... Three years later, Schrodinger introduced his wave equation, whose solutions are the wavefunctions for a particle trapped in a potential well. Since the wave function contains all that is knowable about a particle that is behaving as a wave, when Schrodinger's equation is applied to an electron bou ...
CHAPTER 8: Atomic Physics
CHAPTER 8: Atomic Physics

Effective Field Theory of Dissipative Fluids
Effective Field Theory of Dissipative Fluids

On the Explanation for Quantum Statistics
On the Explanation for Quantum Statistics

... been viewed with suspicion (because already incompatible with classical principles, philosophical or physical, almost always unstated). After all, classical particles can surely be distinguished by their trajectories (an argument I shall discuss at length). The very concept of particle indistinguish ...
Helium - NICADD
Helium - NICADD

Initial Conditions from Inflation
Initial Conditions from Inflation

Few-body insights into the fractional quantum Hall effect
Few-body insights into the fractional quantum Hall effect

... 3. Since these states are identifiable by a property of noninteracting electrons, it should be possible to probe these exceptional degeneracy states in other ways, e.g. without a magnetic field, or with neutral, ultracold polarized fermionic (or bosonic atoms) 4. One can use the approximate separabi ...
1 ψ ω ω ω ψ ψ ψ
1 ψ ω ω ω ψ ψ ψ

... A proton is confined to move in a one-dimensional box of length 0.200 nm. (a) Find the lowest possible energy of the proton. (b) What If? What is the lowest possible energy of an electron confined to the same box? (c) How do you account for the great difference in your results for (a) and (b)? ...
Modification of the spin structure of high-molecular-weight
Modification of the spin structure of high-molecular-weight

... The ground state S = 10 is interpreted as the result of an antiferromagnetic interaction between the ~ n and ~~+n ~ ions, so that such a cluster can be considered as a ferrimagnet at the molecular level.') It is well known that in ferrimagnets two phase transitions take place as the magnetic field i ...
A Brief Survey of Quantum Computing
A Brief Survey of Quantum Computing

...  Given f(n) and g(n), does the difference grow with n or stay the same ? Difference: f(n)/g(n). Only pay attention to the “limit behavior” @ n∞  If f(n)/g(n) const as n∞ then f(n) is at least as good as g(n) if f(n)/g(n) ≤ const as n∞ then f(n) is at least as good as g(n)  If f(x) is at least ...
Science, consciousness and World-View
Science, consciousness and World-View

... idea that energy sometimes (not always) came in packets, after a while it became clear that this was not really a fundamental point. As fundamentals, I would choose two later discoveries: complementarity and non-locality. The implications of complementarity “Complementarity” is a complete misnomer: ...
Curriculum Vitae - Quantum Information Theory and Cryptography
Curriculum Vitae - Quantum Information Theory and Cryptography

Slides
Slides

... • We utilize the density matrix equations of motion for a two-level system to describe the optical response of a quantum dot exciton. • This theory is extremely well developed and has been used to successfully describe the nonlinear optical response of GaAs/InAs quantum dots. • Most of the following ...
Quantum Information and the Representation Theory of the
Quantum Information and the Representation Theory of the

Many Particle Systems
Many Particle Systems

Relativistic effects in the dynamical Casimir effect
Relativistic effects in the dynamical Casimir effect

Jaewook Ahn
Jaewook Ahn

PHYSICS 109
PHYSICS 109

mindful universe - Thedivineconspiracy.org
mindful universe - Thedivineconspiracy.org

I. What is String Theory?
I. What is String Theory?

Transport Electron through a Quantum Wire by Side-Attached Asymmetric Quantum-Dot Chains
Transport Electron through a Quantum Wire by Side-Attached Asymmetric Quantum-Dot Chains

... Figure 3.a, N=3 and M=4 are set for first and second chains. It is clear that the sum of dots in two-chains (N+M) determines the number of anti-resonances in conductance spectrum and it is independent of the value of p. In other words, the number of mini gaps matches exactly the number of QDs chains ...
< 1 ... 350 351 352 353 354 355 356 357 358 ... 503 >

Canonical quantization

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the ""method of classical analogy"" for quantization, and detailed it in his classic text. The word canonical arises from the Hamiltonian approach to classical mechanics, in which a system's dynamics is generated via canonical Poisson brackets, a structure which is only partially preserved in canonical quantization.This method was further used in the context of quantum field theory by Paul Dirac, in his construction of quantum electrodynamics. In the field theory context, it is also called second quantization, in contrast to the semi-classical first quantization for single particles.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report