• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Homework 8    
Homework 8    

... A beam of protons is moving along an accelerator pipe in the z-direction. The particles are uniformly distributed in a cylindrical volume of length L0 (in the z direction) and radius R0 . The particles have momenta uniformly distributed with pz in an interval p0 ± pz and the transverse (along x-y) m ...
ppt
ppt

... More generally, compute depth order, do alphacompositing (and worry about shadows etc.) Can fit into Reyes very easily ...
(a) At equilibrium, the temperature in the larger (L) side and smaller (S)
(a) At equilibrium, the temperature in the larger (L) side and smaller (S)

... would not be available for use in Ch. 3 if we were covering the chapters in numerical order. So there should be a way to solve this problem using only information covered in Ch. 3. This is called "making an easy problem into a difficult one." The Ch. 3 method is to find the value of NS (or NL ) that m ...
Molecular Dynamics
Molecular Dynamics

... Observables, Statistics • Equilibrium temperature (in micro-canonical ensemble) by equipartition theorem. ...
< 1 2 3 4 5 6

Grand canonical ensemble

In statistical mechanics, a grand canonical ensemble is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that is being maintained in thermodynamic equilibrium (thermal and chemical) with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles. The system's volume, shape, and other external coordinates are kept the same in all possible states of the system.The thermodynamic variables of the grand canonical ensemble are chemical potential (symbol: µ) and absolute temperature (symbol: T). The ensemble is also dependent on mechanical variables such as volume (symbol: V) which influence the nature of the system's internal states. This ensemble is therefore sometimes called the µVT ensemble, as each of these three quantities are constants of the ensemble.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report