
Atomic Structure Notes
... 2. Energy is in fact quantized and can only occur in discrete units of size hv. Each of these small "packets" of energy is called a quantum (or a photon when we are talking about light). E photon = hv = hc λ Einstein at the same time came up with the idea that E (energy) has mass (m). Giving us the ...
... 2. Energy is in fact quantized and can only occur in discrete units of size hv. Each of these small "packets" of energy is called a quantum (or a photon when we are talking about light). E photon = hv = hc λ Einstein at the same time came up with the idea that E (energy) has mass (m). Giving us the ...
next article
... where the cj are constants, for substitution of a typical term of (21) reduces (20) to an expression differing from (17) only by a constant factor. Now by (19) the term proportional to cj in (21) simply adds to (15) very approximately the change cjihb( ,IeS/ih)/baj which results in (15) if a, is alt ...
... where the cj are constants, for substitution of a typical term of (21) reduces (20) to an expression differing from (17) only by a constant factor. Now by (19) the term proportional to cj in (21) simply adds to (15) very approximately the change cjihb( ,IeS/ih)/baj which results in (15) if a, is alt ...
Basic Ideas for Particle Properties
... Magnet selects particles with momentum. Two counters and oscilloscope measure the distance and time to give the velocity. The mass is the above momentum divided by the ...
... Magnet selects particles with momentum. Two counters and oscilloscope measure the distance and time to give the velocity. The mass is the above momentum divided by the ...
PHYS13071 Assessment 2012
... ten particles in the ground state and none in the excited state, while in the other microstate there are five particles in the ground state and five in the excited state. The “statistical weight” of these two microstates is 1 to 1. If the particles are distinguishable, there is still just one micros ...
... ten particles in the ground state and none in the excited state, while in the other microstate there are five particles in the ground state and five in the excited state. The “statistical weight” of these two microstates is 1 to 1. If the particles are distinguishable, there is still just one micros ...
Wave Physics PHYS2023
... • this illustration corresponds to the wavepacket evolution of a quantum mechanical particle, described by the Schrödinger equation ...
... • this illustration corresponds to the wavepacket evolution of a quantum mechanical particle, described by the Schrödinger equation ...
The impact of hyperfine interaction on the charge radius of Protons
... Protons fall under the category of baryons and contain two up quarks and a down quark, hence a baryon of type uud. To calculate the wave function of Protons we employ the Dirac equation for a three-particle system, since a Proton is formed of three particles almost of the same order of size. In our ...
... Protons fall under the category of baryons and contain two up quarks and a down quark, hence a baryon of type uud. To calculate the wave function of Protons we employ the Dirac equation for a three-particle system, since a Proton is formed of three particles almost of the same order of size. In our ...
Multi-Electron Atoms Helium Schrödinger Equation
... probabilty density) to be symmetric with respect to any particle exchange. ...
... probabilty density) to be symmetric with respect to any particle exchange. ...
1. Wave Packet and Heisenberg Uncertainty Relations En
... is therefore certain that the particle cannot continue as a propagating wave into the barrier. The reflection probability must therefore be equal to one, R = |r|2 = 1. From their definitions, k and κ are real numbers. Therefore, only solutions A and D satisfy the condition that R = 1. For a barrier ...
... is therefore certain that the particle cannot continue as a propagating wave into the barrier. The reflection probability must therefore be equal to one, R = |r|2 = 1. From their definitions, k and κ are real numbers. Therefore, only solutions A and D satisfy the condition that R = 1. For a barrier ...
BCK0103-15 Quantum physics (3-0-4) - nuvem
... BCK0103-15 Quantum physics (3-0-4) General goals: The main goal of this course is to present to the student the main concepts of the quantum theory, with the perspective of comprehending the basic phenomena which originate at the atomic scale, their effects and technological applications. ...
... BCK0103-15 Quantum physics (3-0-4) General goals: The main goal of this course is to present to the student the main concepts of the quantum theory, with the perspective of comprehending the basic phenomena which originate at the atomic scale, their effects and technological applications. ...
One-dimensional Schrödinger equation
... A first aspect to be considered in the numerical solution of quantum problems is the presence of quantization of energy levels for bound states, such as for instance Eq.(1.15) for the harmonic oscillator. The acceptable energy values En are not in general known a priori. Thus in the Schrödinger equ ...
... A first aspect to be considered in the numerical solution of quantum problems is the presence of quantization of energy levels for bound states, such as for instance Eq.(1.15) for the harmonic oscillator. The acceptable energy values En are not in general known a priori. Thus in the Schrödinger equ ...
Wave function

A wave function in quantum mechanics describes the quantum state of an isolated system of one or more particles. There is one wave function containing all the information about the entire system, not a separate wave function for each particle in the system. Its interpretation is that of a probability amplitude. Quantities associated with measurements, such as the average momentum of a particle, can be derived from the wave function. It is a central entity in quantum mechanics and is important in all modern theories, like quantum field theory incorporating quantum mechanics, while its interpretation may differ. The most common symbols for a wave function are the Greek letters ψ or Ψ (lower-case and capital psi).For a given system, once a representation corresponding to a maximal set of commuting observables and a suitable coordinate system is chosen, the wave function is a complex-valued function of the system's degrees of freedom corresponding to the chosen representation and coordinate system, continuous as well as discrete. Such a set of observables, by a postulate of quantum mechanics, are Hermitian linear operators on the space of states representing a set of physical observables, like position, momentum and spin that can, in principle, be simultaneously measured with arbitrary precision. Wave functions can be added together and multiplied by complex numbers to form new wave functions, and hence are elements of a vector space. This is the superposition principle of quantum mechanics. This vector space is endowed with an inner product such that it is a complete metric topological space with respect to the metric induced by the inner product. In this way the set of wave functions for a system form a function space that is a Hilbert space. The inner product is a measure of the overlap between physical states and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The actual space depends on the system's degrees of freedom (hence on the chosen representation and coordinate system) and the exact form of the Hamiltonian entering the equation governing the dynamical behavior. In the non-relativistic case, disregarding spin, this is the Schrödinger equation.The Schrödinger equation determines the allowed wave functions for the system and how they evolve over time. A wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name ""wave function"", and gives rise to wave–particle duality. The wave of the wave function, however, is not a wave in physical space; it is a wave in an abstract mathematical ""space"", and in this respect it differs fundamentally from water waves or waves on a string.For a given system, the choice of which relevant degrees of freedom to use are not unique, and correspondingly the domain of the wave function is not unique. It may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space, the two are related by a Fourier transform. These descriptions are the most important, but they are not the only possibilities. Just like in classical mechanics, canonical transformations may be used in the description of a quantum system. Some particles, like electrons and photons, have nonzero spin, and the wave function must include this fundamental property as an intrinsic discrete degree of freedom. In general, for a particle with half-integer spin the wave function is a spinor, for a particle with integer spin the wave function is a tensor. Particles with spin zero are called scalar particles, those with spin 1 vector particles, and more generally for higher integer spin, tensor particles. The terminology derives from how the wave functions transform under a rotation of the coordinate system. No elementary particle with spin 3⁄2 or higher is known, except for the hypothesized spin 2 graviton. Other discrete variables can be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g. a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g. z-component of spin). These values are often displayed in a column matrix (e.g. a 2 × 1 column vector for a non-relativistic electron with spin 1⁄2).In the Copenhagen interpretation, an interpretation of quantum mechanics, the squared modulus of the wave function, |ψ|2, is a real number interpreted as the probability density of measuring a particle as being at a given place at a given time or having a definite momentum, and possibly having definite values for discrete degrees of freedom. The integral of this quantity, over all the system's degrees of freedom, must be 1 in accordance with the probability interpretation, this general requirement a wave function must satisfy is called the normalization condition. Since the wave function is complex valued, only its relative phase and relative magnitude can be measured. Its value does not in isolation tell anything about the magnitudes or directions of measurable observables; one has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.The unit of measurement for ψ depends on the system, and can be found by dimensional analysis of the normalization condition for the system. For one particle in three dimensions, its units are [length]−3/2, because an integral of |ψ|2 over a region of three-dimensional space is a dimensionless probability.