• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Group actions in symplectic geometry
Group actions in symplectic geometry

7 Symplectic Quotients
7 Symplectic Quotients

... Theorem 7.6 Suppose G acts freely on Φ−1 (0). Then 0 is a regular value of Φ and M0 = Φ−1 (0)/G is a smooth manifold. Theorem 7.7 In the notation of the previous theorem, M0 is symplectic. Proof: Define Tm̄ M0 = Tm Φ−1 (0)/(g · m = Tm (G ◦ m)). Let η¯1 , η¯2 ∈ Tm Φ−1 (0). The quotient by Tm (G · m). ...
L6: Almost complex structures To study general symplectic
L6: Almost complex structures To study general symplectic

... The tangent spaces to M are naturally complex vector spaces, which carry multiplication by i. More generally, for almost complex (M, J), J extends complex-linearly to T M ⊗ C , and splits this space into ±i-eigenspaces T M ⊗ C = ∼ T M , and T 1,0(M ) ⊕ T 0,1(M ). So T 1,0(M ) = R in the complex case ...
Some Notes on Compact Lie Groups
Some Notes on Compact Lie Groups

... In particular, the embeddings SU (2) ,→ SU (n) and Sp(1) ,→ Sp(n) induce isomorphisms at the level of π3 . For SO(n), we use π3 (Sp(2)) ∼ = π3 (SO(5)) that follows from the relation (iii) and the homotopy exact sequence (for G = Sp(2), H = {±12 }). By this we find a map Sp(1) → SO(n) for n = 5, 6, 7 ...
< 1 ... 22 23 24 25 26

Invariant convex cone

In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.For a simple Lie algebra, the existence of an invariant convex cone forces the Lie algebra to have a Hermitian structure, i.e. the maximal compact subgroup has center isomorphic to the circle group. The invariant convex cone generated by a generator of the Lie algebra of the center is closed and is the minimal invariant convex cone (up to a sign). The dual cone with respect to the Killing form is the maximal invariant convex cone. Any intermediate cone is uniquely determined by its intersection with the Lie algebra of a maximal torus in a maximal compact subgroup. The intersection is invariant under the Weyl group of the maximal torus and the orbit of every point in the interior of the cone intersects the interior of the Weyl group invariant cone.For the real symplectic group, the maximal and minimal cone coincide, so there is only one invariant convex cone. When one is properly contained in the other, there is a continuum of intermediate invariant convex cones.Invariant convex cones arise in the analysis of holomorphic semigroups in the complexification of the Lie group, first studied by Grigori Olshanskii. They are naturally associated with Hermitian symmetric spaces and their associated holomorphic discrete series. The semigroup is made up of those elements in the complexification which, when acting on the Hermitian symmetric space of compact type, leave invariant the bounded domain corresponding to the noncompact dual. The semigroup acts by contraction operators on the holomorphic discrete series; its interior acts by Hilbert–Schmidt operators. The unitary part of their polar decomposition is the operator corresponding to an element in the original real Lie group, while the positive part is the exponential of an imaginary multiple of the infinitesimal operator corresponding to an element in the maximal cone. A similar decomposition already occurs in the semigroup.The oscillator semigroup of Roger Howe concerns the special case of this theory for the real symplectic group. Historically this has been one of the most important applications and has been generalized to infinite dimensions. This article treats in detail the example of the invariant convex cone for the symplectic group and its use in the study of the symplectic Olshanskii semigroup.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report