
4.2 Definition of a Vector Space - Full
... Real (complex) scalar multiplication: A rule for combining each vector in V with any real (complex) number. We will use the usual notation kv to denote the result of scalar multiplying the vector v by the real (complex) number k. We are now in a position to give a precise definition of a vector spac ...
... Real (complex) scalar multiplication: A rule for combining each vector in V with any real (complex) number. We will use the usual notation kv to denote the result of scalar multiplying the vector v by the real (complex) number k. We are now in a position to give a precise definition of a vector spac ...
Document
... Suppose we have some vector A, in the equation Ax=b and we want to find which vectors x are pointing in the same direction (parallel) after the transformation. These vectors are called Eigenvectors. The vector b must be a scalar multiple of x. The scalar that multiplies x is called the Eigenvalue. ...
... Suppose we have some vector A, in the equation Ax=b and we want to find which vectors x are pointing in the same direction (parallel) after the transformation. These vectors are called Eigenvectors. The vector b must be a scalar multiple of x. The scalar that multiplies x is called the Eigenvalue. ...
C f dr
... D. (So D doesn’t contain any of its boundary points.) In addition, we assume that D is connected: this means that any two points in D can be joined by a path that lies in D. The question remains: How is it possible to determine whether or not a vector field F is conservative? Suppose it is known tha ...
... D. (So D doesn’t contain any of its boundary points.) In addition, we assume that D is connected: this means that any two points in D can be joined by a path that lies in D. The question remains: How is it possible to determine whether or not a vector field F is conservative? Suppose it is known tha ...
Dynamical system
In mathematics, a dynamical system is a set of relationships among two or more measurable quantities, in which a fixed rule describes how the quantities evolve over time in response to their own values. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, and the number of fish each springtime in a lake.At any given time a dynamical system has a state given by a set of real numbers (a vector) that can be represented by a point in an appropriate state space (a geometrical manifold). The evolution rule of the dynamical system is a function that describes what future states follow from the current state. Often the function is deterministic; in other words, for a given time interval only one future state follows from the current state; however, some systems are stochastic, in that random events also affect the evolution of the state variables.