• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Chapter 7: Right Triangles and Trigonometry
Chapter 7: Right Triangles and Trigonometry

COURSE MAPPING:
COURSE MAPPING:

Key Concepts, continued
Key Concepts, continued

... • Be careful when using one vertex point to name the angle, as this can lead to confusion. • If the vertex point serves as the vertex for more than one angle, three points or a number must be used to name the angle. ...
Chapter 5 - West Jefferson Local Schools
Chapter 5 - West Jefferson Local Schools

Parallel Lines
Parallel Lines

... Intersecting Lines are two or more lines that ____________ over each other. They meet at a ______________. That point would be on __________ ____________. Circle the intersecting lines. ...
Section 6.1 Inverse Trigonometric Functions
Section 6.1 Inverse Trigonometric Functions

Logos, badges, signs, and banners are designed to attract geometric concepts.
Logos, badges, signs, and banners are designed to attract geometric concepts.

7-1 Basic Trigonometric Identities
7-1 Basic Trigonometric Identities

... Prove that sec x cot x = sin x is not a trigonometric identity by producing a counterexample. ...
Congruent Polygons, SAS Postulate
Congruent Polygons, SAS Postulate

GEOMETRY GRADES 9-12 THE EWING PUBLIC SCHOOLS 2099
GEOMETRY GRADES 9-12 THE EWING PUBLIC SCHOOLS 2099

Pre K-Kindergarten Students will be able to: • Sort and classify
Pre K-Kindergarten Students will be able to: • Sort and classify

Geometry Module 1, Topic B, Lesson 6: Teacher Version
Geometry Module 1, Topic B, Lesson 6: Teacher Version

Maths (E) - General Education
Maths (E) - General Education

MasterJinHasvoldseter
MasterJinHasvoldseter

... construct a triangle ∆ABC with A, B, and C as vertices (Figure 8). Let l be any line intersecting AB in a point D between A and B; then l also intersect either AC or BC. If C does not lie on l, then l does not intersect both AC and BC. ([EM] p.74 & [G1] p.114) Simply said, if a line "goes into" a tr ...
Graphing Other Trigonometric Functions 9.5
Graphing Other Trigonometric Functions 9.5

PC 12 Midterm Review
PC 12 Midterm Review

Chapter 29 - Maths Area
Chapter 29 - Maths Area

Geometry Professional Development 2014
Geometry Professional Development 2014

Focus Topic 6 – Congruent Triangles
Focus Topic 6 – Congruent Triangles

Conditions for Parallelograms
Conditions for Parallelograms

Solving Trigonometric Equations with Identities
Solving Trigonometric Equations with Identities

7-3 Similar Triangles p483 1-15 odd 16-21 23 27
7-3 Similar Triangles p483 1-15 odd 16-21 23 27

CHAPTER 4
CHAPTER 4

Chapter5 Triangles.pptx
Chapter5 Triangles.pptx

3/16/13 Secondary Session Sallee Powerpoint
3/16/13 Secondary Session Sallee Powerpoint

< 1 ... 81 82 83 84 85 86 87 88 89 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report