• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry Name Final Exam Review Questions Spiral Review for the
Geometry Name Final Exam Review Questions Spiral Review for the

... 149) A meter stick is held perpendicular to the ground. It casts a shadow 1.5 m long. At the same time a telephone pole casts a shadow that is 9 m long. How tall is the telephone pole? ...
Section 4.3
Section 4.3

... Section 4.3 -A Right Angle Theorem Michael Smertz H Geometry- 8 30 May 2008 ...
Inductive Reasoning
Inductive Reasoning

GETE0301
GETE0301

4.4 Proving Triangles are Congruent: ASA and AAS
4.4 Proving Triangles are Congruent: ASA and AAS

Chapter 10: Two-Dimensional Figures
Chapter 10: Two-Dimensional Figures

Math Analysis-HP - Whittier Union High School District
Math Analysis-HP - Whittier Union High School District

Goal 9 - Archdiocese of Chicago
Goal 9 - Archdiocese of Chicago

10.7 Trigonometric Equations and Inequalities
10.7 Trigonometric Equations and Inequalities

Chapter 3: Angles
Chapter 3: Angles

Geometry Unit 2 Formative Items Part 1
Geometry Unit 2 Formative Items Part 1

4-6 - Nutley Public Schools
4-6 - Nutley Public Schools

Document
Document

... Recall that a polar equation is an equation whose variables are r and θ. The graph of a polar equation is the set of all points whose polar coordinates satisfy the equation. We use polar grids like the one shown to graph polar equations. The grid consists of circles with centers at the pole. This po ...
Math1316-TestReview3-Spring2016
Math1316-TestReview3-Spring2016

Chapter 7
Chapter 7

Relationships in Triangles
Relationships in Triangles

1.13 Similarity and Congruence
1.13 Similarity and Congruence

- Triumph Learning
- Triumph Learning

SSLC - MATHEMATICS CHAPTER 10 CIRCLES ENGLISH VERSION
SSLC - MATHEMATICS CHAPTER 10 CIRCLES ENGLISH VERSION

sin =35 37 , tan =12 37 , csc = 1 cos =37 35 , cot =37 12 , sec
sin =35 37 , tan =12 37 , csc = 1 cos =37 35 , cot =37 12 , sec

2.7.1 Euclidean Parallel Postulate
2.7.1 Euclidean Parallel Postulate

... There are many statements that are equivalent to the Euclidean Parallel Postulate, which could be used as the axiom. We list several of them below after the exercises. How many of them can you show are equivalent? The exercises ask you to prove one direction on a few of the statements and to find a ...
The regular polyhedra
The regular polyhedra

Sample pages 1 PDF
Sample pages 1 PDF

Geometry Module 1, Topic E, Lesson 28: Teacher
Geometry Module 1, Topic E, Lesson 28: Teacher

Activity 3.5.5 Sufficient Conditions for Parallelograms
Activity 3.5.5 Sufficient Conditions for Parallelograms

< 1 ... 52 53 54 55 56 57 58 59 60 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report