• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
2 Euclid`s approach to geometry
2 Euclid`s approach to geometry

Unit 5 Notes/Portfolio
Unit 5 Notes/Portfolio

File
File

ASA, AAS, and HL
ASA, AAS, and HL

Unit 5 Portfolio
Unit 5 Portfolio

Angles, Parallel Lines, and Transversals
Angles, Parallel Lines, and Transversals

Triangle Angles Triangle Sum Conjecture The sum of the measures
Triangle Angles Triangle Sum Conjecture The sum of the measures

to - NDA coaching in Chandigarh
to - NDA coaching in Chandigarh

Trigonometric Functions
Trigonometric Functions

Semester 1 Closure
Semester 1 Closure

2nd NW Honors Review Notes
2nd NW Honors Review Notes

... from the largest angle. This means that is the smallest, and is the largest. Therefore listing from smallest to largest would be: ...
Show all work on a separate sheet of work paper
Show all work on a separate sheet of work paper

GEOMETRY
GEOMETRY

Slide 1
Slide 1

Polygons Around the World
Polygons Around the World

Chapter 6 Quiz Review
Chapter 6 Quiz Review

... 21. Find AM in the parallelogram if PN = 12 and MO  17. ...
Powerpoint-Polygons Around the World
Powerpoint-Polygons Around the World

Congruent Triangles Review Sheet
Congruent Triangles Review Sheet

... 5. Which statement is not valid for proving that two triangles are congruent? (1) AAS ≅ AAS ...
Geometry Unpacked Content
Geometry Unpacked Content

North East School Division Unpacking Outcomes
North East School Division Unpacking Outcomes

... a. Identify and describe situations relevant to self, family, or community that involve parallel lines cut by transversals. b. Develop, generalize, explain, apply, and prove relationships between pairs of angles formed by transversals and parallel lines, with and without the use of technology. c. Pr ...
Yr8-Constructions (Worksheet)
Yr8-Constructions (Worksheet)

Maths – Geometry (properties of shapes)
Maths – Geometry (properties of shapes)

Unit 5 Quadrilaterals Review 2
Unit 5 Quadrilaterals Review 2

... opposite sides are parallel 3. Only 1 pair of opposite sides are parallel 4. 2 pairs of opposite sides are congruent 5. Only 1 pair of opposite sides are congruent 6. All sides are congruent 7. Two pairs of adjacent sides are congruent ...
Right Triangle
Right Triangle

... Solution. In each case, we first need to find the hypotenuse z . Then we apply the right triangle trig formulas to find the six trig function values. Finally, we'll use tan–1 (y/x) to find the angle ! . In each case though, we will have to add either 180º or 360º to adjust for the correct quadrant o ...
Extended Solns 2017 - United Kingdom Mathematics Trust
Extended Solns 2017 - United Kingdom Mathematics Trust

< 1 ... 254 255 256 257 258 259 260 261 262 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report