• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Proving Identities
Proving Identities

geometry 1a 1st semester review
geometry 1a 1st semester review

Determine whether the triangles are similar. If so, write a similarity
Determine whether the triangles are similar. If so, write a similarity

X - Ms. Williams – Math
X - Ms. Williams – Math

... Parallel Lines and the Triangle Angle-Sum Theorem GEOMETRY LESSON 3-3 ...
Coaching Class Hara 8.Quadrilaterals A Diagonal Of A
Coaching Class Hara 8.Quadrilaterals A Diagonal Of A

Trigonometry - Scottsdale Community College
Trigonometry - Scottsdale Community College

South Carolina College- and Career-Ready Standards for
South Carolina College- and Career-Ready Standards for

Characterizations of Trapezoids
Characterizations of Trapezoids

... A trapezoid (in British English it is called a trapezium) is a quadrilateral with a pair of opposite parallel sides. But there is some disagreement if the definition shall state exactly one pair or at least one pair. The former is called an exclusive definition and the latter an inclusive definition ...
Multiple-Angle and Product-to-Sum Formulas
Multiple-Angle and Product-to-Sum Formulas

Refer to Page 403. - Collierville High School
Refer to Page 403. - Collierville High School

4-4 Isoceles Triangles, Corollaries and CPCTC
4-4 Isoceles Triangles, Corollaries and CPCTC

Euclid
Euclid

PC_Geometry_Macomb_April08
PC_Geometry_Macomb_April08

NCERT Exemplar Maths - Pioneer Mathematics
NCERT Exemplar Maths - Pioneer Mathematics

Chapter 4: Congruent Triangles
Chapter 4: Congruent Triangles

... triangles are important in construction. Include a description of how to classify triangles and a justification of why you think one type of triangle might be used more often in architecture than other types. ...
Test 3 Review 2412 Sp15.tst
Test 3 Review 2412 Sp15.tst

Section 7.1 Powerpoint
Section 7.1 Powerpoint

Use the figure at the right. 1. Name the vertex of SOLUTION: U
Use the figure at the right. 1. Name the vertex of SOLUTION: U

Unit One - Math 10C
Unit One - Math 10C

Topic 6 Polygons and Quadrilaterals
Topic 6 Polygons and Quadrilaterals

Geometry Unit 9 Test - Quadrilaterals
Geometry Unit 9 Test - Quadrilaterals

... 17. The isosceles trapezoid is part of an isosceles triangle with a 22° vertex angle. What is the measure of an acute base angle of the trapezoid? Of an obtuse base angle? The diagram is not to scale. ...
JMAP REGENTS BY DATE
JMAP REGENTS BY DATE

Reference
Reference

Is an Equilateral Triangle Isosceles?
Is an Equilateral Triangle Isosceles?

Solutions
Solutions

< 1 ... 21 22 23 24 25 26 27 28 29 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report