• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Practice B Triangle Congruence: CPCTC
Practice B Triangle Congruence: CPCTC

CK-12 Geometry: Proving Quadrilaterals are Parallelograms
CK-12 Geometry: Proving Quadrilaterals are Parallelograms

Support Material
Support Material

Secondary II - Cache County School District
Secondary II - Cache County School District

Constructing graphs with given eigenvalues and angles
Constructing graphs with given eigenvalues and angles

Congruent Figures
Congruent Figures

Ghost Conical Space - St. Edwards University
Ghost Conical Space - St. Edwards University

Chapter 2 Practice Test
Chapter 2 Practice Test

Chapter 2 Practice Test Multiple Choice Identify the choice that best
Chapter 2 Practice Test Multiple Choice Identify the choice that best

12 Congruent Triangles
12 Congruent Triangles

... a. Use dynamic geometry software to draw any triangle and label it △ABC. b. Find the measures of the interior angles of the triangle. c. Find the sum of the interior angle measures. d. Repeat parts (a)–(c) with several other triangles. Then write a conjecture about the sum of the measures of the int ...
12 Congruent Triangles
12 Congruent Triangles

2-3: Deductive Reasoning
2-3: Deductive Reasoning

... Determine the correct conclusions based on interpreting a theorem in which necessary or sufficient conditions in the theorem or hypothesis are satisfied. ...


Lecture Notes
Lecture Notes

Core - The New Indian Model School, Dubai
Core - The New Indian Model School, Dubai

Chapter 4 Congruent Triangles
Chapter 4 Congruent Triangles

Congruent Figures
Congruent Figures

powerpoint: basic identities
powerpoint: basic identities

... Proving an Identity Steps in Proving Identities 1. Start with the more complex side of the identity and work with it exclusively to transform the expression into the simpler side of the identity. 2. Look for algebraic simplifications: • Do any multiplying , factoring, or squaring which is obvious i ...
GETE0403
GETE0403

Chapter 8: Quadrilaterals
Chapter 8: Quadrilaterals

November 20, 2014 Congruent figures have the same shape and size.
November 20, 2014 Congruent figures have the same shape and size.

1 Triangle Congruence
1 Triangle Congruence

Division 3AA/4AA - ICTM Math Contest
Division 3AA/4AA - ICTM Math Contest

Notes On Using Matlab Symbolic ToolBox
Notes On Using Matlab Symbolic ToolBox

1 Congruence Postulates
1 Congruence Postulates

... Two sides and the INCLUDED angle (the angle is in between the 2 marked sides) ...
< 1 ... 19 20 21 22 23 24 25 26 27 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report