
32(2)
... m = 3: The assertion P3 ID /}; P2 is equivalent to x3 DX;XJ. m = 4; Note that x4 = aif^, x = d^, and x3 = i^. Therefore, applying concatenation to the alignments cdz)d;c and P4 ZDP2;P3 implies that x4 IDX;CX3. Consequently, by Lemma 1,(1) cannot hold for m = 4, since x2 begins with a rf. Similar rea ...
... m = 3: The assertion P3 ID /}; P2 is equivalent to x3 DX;XJ. m = 4; Note that x4 = aif^, x = d^, and x3 = i^. Therefore, applying concatenation to the alignments cdz)d;c and P4 ZDP2;P3 implies that x4 IDX;CX3. Consequently, by Lemma 1,(1) cannot hold for m = 4, since x2 begins with a rf. Similar rea ...
CHAPTER 3 Using Tools of Geometry
... zones so that anyone within each zone is always closer to their own post office than to the other one. Copy the island and the locations of the post offices and locate the dividing line between the two zones. Explain how you know this dividing line solves the problem. Or pick several points in each ...
... zones so that anyone within each zone is always closer to their own post office than to the other one. Copy the island and the locations of the post offices and locate the dividing line between the two zones. Explain how you know this dividing line solves the problem. Or pick several points in each ...
Tangents to Circles
... • Circle – set of all points in a plane that are equidistant from a given point called a center of the circle. A circle with center P is called “circle P”, or P. • The distance from the center to a point on the circle is called the radius of the circle. Two circles are congruent if they have the sam ...
... • Circle – set of all points in a plane that are equidistant from a given point called a center of the circle. A circle with center P is called “circle P”, or P. • The distance from the center to a point on the circle is called the radius of the circle. Two circles are congruent if they have the sam ...