Chapter 5 Lesson 5
... Corollary to the Triangle Exterior Angle Theorem The measure of an exterior angle of a triangle is greater than the measure of each of its remote interior angles. ...
... Corollary to the Triangle Exterior Angle Theorem The measure of an exterior angle of a triangle is greater than the measure of each of its remote interior angles. ...
Geometry Fall
... will begin to focus on more precise terminology, symbolic representations, and the development of proofs. Students will explore concepts covering coordinate and transformational geometry; logical argument and constructions; proof and congruence; similarity, proof, and trigonometry; two- and three-di ...
... will begin to focus on more precise terminology, symbolic representations, and the development of proofs. Students will explore concepts covering coordinate and transformational geometry; logical argument and constructions; proof and congruence; similarity, proof, and trigonometry; two- and three-di ...
Congruent Triangles
... If the hypotenuse and the leg of one right triangle are congruent to the corresponding parts of the second right triangle, the two triangles are congruent ...
... If the hypotenuse and the leg of one right triangle are congruent to the corresponding parts of the second right triangle, the two triangles are congruent ...
5-4 Inverses Contrapositives and Indirect Reasoning
... statement “If ABC is equilateral, then it is isosceles.” To write the inverse of a conditional, negate both the hypothesis and the conclusion. ...
... statement “If ABC is equilateral, then it is isosceles.” To write the inverse of a conditional, negate both the hypothesis and the conclusion. ...
congruent triangles
... 3. Using the same compass setting, draw two intersecting arcs in the interior of your angle, one centered at B, the other centered at C. ...
... 3. Using the same compass setting, draw two intersecting arcs in the interior of your angle, one centered at B, the other centered at C. ...
Honros Geometry: One Step Congruence Proofs
... 5) If PQ + PT = 25, and PQ = AB, then AB + PT = 25 a) Transitive Property ...
... 5) If PQ + PT = 25, and PQ = AB, then AB + PT = 25 a) Transitive Property ...
Euclidean geometry
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.