2. 2d Particle accelerators_tcm4-665527
... Do extra dimensions of space really exist?
Einstein showed that the three dimensions of space are related to time.
Subsequent theories propose that further hidden dimensions of space may
exist. For example, string theory implies that there are additional spatial
dimensions yet to be observed. These ...
A search for the Higgs boson in the decay to b-quarks
... If a particle travels with the speed of light, left or right handedness is independent of its reference frame
(in Formula 1.1, the sign of helicity depends on the direction of p). Only mass-less particles travel with
the speed of light, but we neglect the mass of the neutrinos in this section. It gi ...
Search for the Higgs boson
The search for the Higgs boson was a 40-year effort by physicists to prove the existence or non-existence of the Higgs boson, first theorised in the 1960s. The Higgs boson is the last unobserved fundamental particle in the Standard Model of particle physics, and its discovery would be the ""ultimate verification"" of the Standard Model. In March 2013, the Higgs Boson was officially confirmed to exist.A confirmed answer would additionally prove or disprove the existence of the hypothetical Higgs field—a field of immense significance that is hypothesised as the source of electroweak symmetry breaking and the means by which elementary particles acquire mass. Symmetry breaking is considered proven but confirming exactly how this occurs in nature is a major unanswered question in physics. Proof of the Higgs field (by observing the associated particle), and evidence of its properties, is likely to greatly affect human understanding of the universe, validate the final unconfirmed part of the Standard Model as essentially correct, indicate which of several current particle physics theories are more likely correct, and open up ""new"" physics beyond current theories. If the Higgs boson were shown not to exist, other alternative sources for the Higgs mechanism would need to be considered and the same experimental equipment would be used for that purpose.Despite their importance, the search and any proof have been extremely difficult and taken decades, because direct production, detection and verification of the Higgs boson on the scale needed to confirm the discovery and learn its properties requires a very large experimental project and huge computing resources. For this reason, most experiments until around 2011 aimed to exclude ranges of masses that the Higgs could not have. Ultimately the search led to the construction of the Large Hadron Collider (LHC) in Geneva, Switzerland, the largest particle accelerator in the world, designed especially for this and other high-energy tests of the Standard Model.Experiments showed tentative positive signs were found at the end of 2011, and on 4 July 2012 CERN announced that two different experimental teams (the CMS and the ATLAS teams), working in isolation from each other, independently announced they had each confirmed the same result–a previously unknown boson of mass between 125 and 7002127000000000000♠127 GeV/c2 was proven to exist with a likelihood of error under one in a million in each experiment. The newly discovered particle's behaviour has so far been ""consistent with"" that of the theorized Higgs boson; however, as of August 2012 it has yet to be confirmed as a Higgs boson, nor are its properties fully known.