
MAD2104 Course Notes - FSU Math
... irrational numbers are all infinite. Not all infinite sets are considered to be the same “size.” The set of real numbers is considered to be a much larger set than the set of integers. In fact, this set is so large that we cannot possibly list all its elements in any organized manner the way the int ...
... irrational numbers are all infinite. Not all infinite sets are considered to be the same “size.” The set of real numbers is considered to be a much larger set than the set of integers. In fact, this set is so large that we cannot possibly list all its elements in any organized manner the way the int ...
Full text
... attention and it has been demonstrated that such an integer, if it exists, must be extraordinary. For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative answer to Lehmer's question must have at least 14 distinct prime factors and exceed 1020. The second is t ...
... attention and it has been demonstrated that such an integer, if it exists, must be extraordinary. For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative answer to Lehmer's question must have at least 14 distinct prime factors and exceed 1020. The second is t ...
Consequence Operators for Defeasible - SeDiCI
... Di®erent formalisms have been developed, most of them sharing the common notions of argument and warrant. In defeasible argumentation, an argument is a tentative (defeasible) proof for reaching a conclusion. An argument is warranted when it ultimately prevails over other con°icting arguments. In thi ...
... Di®erent formalisms have been developed, most of them sharing the common notions of argument and warrant. In defeasible argumentation, an argument is a tentative (defeasible) proof for reaching a conclusion. An argument is warranted when it ultimately prevails over other con°icting arguments. In thi ...
A Concurrent Logical Framework: The Propositional Fragment Kevin Watkins , Iliano Cervesato
... prior notions conservatively. This property of the method should not be underestimated, because it means that all encodings already devised for LF or LLF remain adequate, and their adequacy proofs can remain exactly the same! We write {A} for the monad type, which in lax logic would be written A [3 ...
... prior notions conservatively. This property of the method should not be underestimated, because it means that all encodings already devised for LF or LLF remain adequate, and their adequacy proofs can remain exactly the same! We write {A} for the monad type, which in lax logic would be written A [3 ...
T - STI Innsbruck
... being conceptually simple; they directly manipulate interpretations of sentences • Unfortunately, the number of interpretations of a language grows exponentially with the number of logical constants. – When the number of logical constants in a propositional language is large, the number of interpret ...
... being conceptually simple; they directly manipulate interpretations of sentences • Unfortunately, the number of interpretations of a language grows exponentially with the number of logical constants. – When the number of logical constants in a propositional language is large, the number of interpret ...
02_Artificial_Intelligence-PropositionalLogic
... being conceptually simple; they directly manipulate interpretations of sentences • Unfortunately, the number of interpretations of a language grows exponentially with the number of logical constants. – When the number of logical constants in a propositional language is large, the number of interpret ...
... being conceptually simple; they directly manipulate interpretations of sentences • Unfortunately, the number of interpretations of a language grows exponentially with the number of logical constants. – When the number of logical constants in a propositional language is large, the number of interpret ...
proof terms for classical derivations
... of p. The second assumed p twice (tagging these assumptions with x and y), conjoined their result (in that order) and disharged them in turn (also in that order). Seeing this, you may realise that there are two other proofs of the same formula. One where the conjuncts are formed in the other order ( ...
... of p. The second assumed p twice (tagging these assumptions with x and y), conjoined their result (in that order) and disharged them in turn (also in that order). Seeing this, you may realise that there are two other proofs of the same formula. One where the conjuncts are formed in the other order ( ...
PPT - UBC Department of CPSC Undergraduates
... • Work forward, playing around with what you can prove from the premises • Work backward, considering what you’d need to reach the conclusion • Play with the form of both premises and conclusions using logical equivalences Finally, disproving something is just proving ...
... • Work forward, playing around with what you can prove from the premises • Work backward, considering what you’d need to reach the conclusion • Play with the form of both premises and conclusions using logical equivalences Finally, disproving something is just proving ...
Mathematical proof

In mathematics, a proof is a deductive argument for a mathematical statement. In the argument, other previously established statements, such as theorems, can be used. In principle, a proof can be traced back to self-evident or assumed statements, known as axioms. Proofs are examples of deductive reasoning and are distinguished from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproved proposition that is believed true is known as a conjecture.Proofs employ logic but usually include some amount of natural language which usually admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of rigorous informal logic. Purely formal proofs, written in symbolic language instead of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics (in both senses of that term). The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.