• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
ppt
ppt

... Capacitors in parallel and series ...
Document
Document

potential
potential

Unit 17 Lab
Unit 17 Lab

Hogan: An Alternative Version of Quantum Mechanics
Hogan: An Alternative Version of Quantum Mechanics

WinFinalDraftB
WinFinalDraftB

Slide 1
Slide 1

... but like photons are quanta of electromagnetic energy, all particle states are the physical manifestation of quantum mechanical wave functions (fields). Not only does each atomic electron exist trapped within quantized energy levels or spin states, but its mass, its physical existence, is a quantum ...
doc - RPI
doc - RPI

... B-4 (6 Points) In order to keep the electron in B-3 from accelerating out of its intended path, a uniform electric field is applied in the proper direction so that if it is correctly adjusted, the electric force on the electron exactly cancels the magnetic force. What is the magnitude of the electri ...
Syllabus: Selection Test for Post Graduate Teachers(STPGT)
Syllabus: Selection Test for Post Graduate Teachers(STPGT)

DC Motors
DC Motors

... The magnitude and direction of this force depend on four variables: the magnitude and direction of the current (I), the length of the wire (L), the strength and direction of the magnetic field (B), and the angle between the field and the wire (Θ). ...
Electric Charge
Electric Charge

... voltage applied on the capacitor which can be read from the multimeter. The capacitance (C) of the given capacitor is 1 Farad (F). Repeat same procedures for 3 times and then determine the average value of CT using equation ½C(ΔP)2 = CTΔT where ΔT is the difference of Tmax and Ti. When reading the m ...
DC Motors
DC Motors

DC Motors
DC Motors

... The magnitude and direction of this force depend on four variables: the magnitude and direction of the current (I), the length of the wire (L), the strength and direction of the magnetic field (B), and the angle between the field and the wire (Θ). ...
Chapter 34
Chapter 34

Powerpoint
Powerpoint

PowerPoint
PowerPoint

EXAM 1 – 100 points - WebPhysics
EXAM 1 – 100 points - WebPhysics

... times when the glass is held 3.0 cm from it. Calculate (A) the focal length of the lens. +2.33 cm (B) the height of the image. –3.22 cm 8) A diffraction grating is designed to have the 2nd order maxima at 10° from the central maximum for red light (λ = 700 nm). How many lines per cm does the grating ...
Answers
Answers

The problem states
The problem states

... An alpha particle has a charge of +3.2 x 10 -19 C and a mass of 6.6 x 10-27 kg. The alpha particle travels at a velocity v of magnitude 550 m/s through a uniform magnetic field B of magnitude 0.045T. The angle between v and B is 52º. a) What is the magnitude of the force FB acting on the particle du ...
41. The electromagnet
41. The electromagnet

Class #12 - Department of Physics | Oregon State
Class #12 - Department of Physics | Oregon State

Exam 2 (word)
Exam 2 (word)

Electromagnetic Radiation and Atomic Physics
Electromagnetic Radiation and Atomic Physics

Problems, exercises
Problems, exercises

The magnetic force law (Lorentz law)
The magnetic force law (Lorentz law)

< 1 ... 637 638 639 640 641 642 643 644 645 ... 661 >

Aharonov–Bohm effect

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic field (E, B), despite being confined to a region in which both the magnetic field B and electric field E are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wavefunction, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.The most commonly described case, sometimes called the Aharonov–Bohm solenoid effect, takes place when the wave function of a charged particle passing around a long solenoid experiences a phase shift as a result of the enclosed magnetic field, despite the magnetic field being negligible in the region through which the particle passes and the particle's wavefunction being negligible inside the solenoid. This phase shift has been observed experimentally. There are also magnetic Aharonov–Bohm effects on bound energies and scattering cross sections, but these cases have not been experimentally tested. An electric Aharonov–Bohm phenomenon was also predicted, in which a charged particle is affected by regions with different electrical potentials but zero electric field, but this has no experimental confirmation yet. A separate ""molecular"" Aharonov–Bohm effect was proposed for nuclear motion in multiply connected regions, but this has been argued to be a different kind of geometric phase as it is ""neither nonlocal nor topological"", depending only on local quantities along the nuclear path.Werner Ehrenberg and Raymond E. Siday first predicted the effect in 1949, and similar effects were later published by Yakir Aharonov and David Bohm in 1959. After publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday's work, which was acknowledged and credited in Bohm and Aharonov's subsequent 1961 paper.Subsequently, the effect was confirmed experimentally by several authors; a general review can be found in Peshkin and Tonomura (1989).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report