• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
The electric field
The electric field

... The problem: An isolated electrical wire is charged uniformly with charge q and bent into a circular shape (radius R) with a small hole b  R (where b is the arc length). What is the electrical field in the middle of the circle? The solution: The simple solution is to use superposition. The electric ...
Magnetic Fields
Magnetic Fields

Induced current into the human body by power frequency electric
Induced current into the human body by power frequency electric

Slide 1
Slide 1

... state of matter, contain ions or free electrons or both and conduct electricity. ...
Nonuniform and constant magnetic field
Nonuniform and constant magnetic field

... As before, we expect to have a drift, vE , superimposed to a gyration movement. As we have done before, to find vE we average on the gyroperiods to obtain v̈ x,y = 0. As this implies v x = 0 (Question: why?) we only have a drift along y. To reach to a value for vE we need to average the cos[k(x0 + r ...
up11_educue_ch27
up11_educue_ch27

1. The electric field intensity inside a dielectric sphere of radius a
1. The electric field intensity inside a dielectric sphere of radius a

Solutions
Solutions

MAGNETIC FIELD OF A SOLENOID Inside
MAGNETIC FIELD OF A SOLENOID Inside

pptx
pptx

... distributed through its volume. (a) Rank the spheres according to their volume charge density, greatest first. The figure also shows a point P for each sphere, all at the same distance from the center of the sphere. (b) Rank the spheres according to the magnitude of the electric field they produce a ...
Learning Goals - אתר מורי הפיזיקה
Learning Goals - אתר מורי הפיזיקה

Transparancies for Atomic Structure Section
Transparancies for Atomic Structure Section

... Christine Davies’ first part ...
Zahn, M., Ferrohydrodynamic Torque-Driven Flows, Journal of Magnetism and Magnetic Materials, U85U, 181-186, 1990
Zahn, M., Ferrohydrodynamic Torque-Driven Flows, Journal of Magnetism and Magnetic Materials, U85U, 181-186, 1990

Electron motion in electric and magnetic fields
Electron motion in electric and magnetic fields

WAVE MECHANICS (Schrödinger, 1926)
WAVE MECHANICS (Schrödinger, 1926)

... WAVE MECHANICS * The energy depends only on the principal quantum number, as in the Bohr model: En = -2.179 X 10-18J /n2 * The orbitals are named by giving the n value followed by a letter symbol for l: l= 0,1, 2, 3, 4, 5, ... s p d f g h ... * All orbitals with the same n are called a “shell”. All ...
PH2200 Practice Final Exam Spring 2004
PH2200 Practice Final Exam Spring 2004

Chapter 28: Magnetic Field and Magnetic Forces
Chapter 28: Magnetic Field and Magnetic Forces

Test- FaF97
Test- FaF97

Potential
Potential

Interactions specimen questions
Interactions specimen questions

... 17. In reactions between sub-nuclear particles, various numbers have been found to be conserved (i.e. unchanged throughout a reaction). (a) State whether or not the following numbers are conserved: ...
The Electric Field
The Electric Field

Lecture #3
Lecture #3

Charged Particles
Charged Particles

Problem set VI Problem 6.1 Problem 6.2 Problem 6.3 Problem 6.4
Problem set VI Problem 6.1 Problem 6.2 Problem 6.3 Problem 6.4

Exam - UF Physics
Exam - UF Physics

< 1 ... 573 574 575 576 577 578 579 580 581 ... 661 >

Aharonov–Bohm effect

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic field (E, B), despite being confined to a region in which both the magnetic field B and electric field E are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wavefunction, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.The most commonly described case, sometimes called the Aharonov–Bohm solenoid effect, takes place when the wave function of a charged particle passing around a long solenoid experiences a phase shift as a result of the enclosed magnetic field, despite the magnetic field being negligible in the region through which the particle passes and the particle's wavefunction being negligible inside the solenoid. This phase shift has been observed experimentally. There are also magnetic Aharonov–Bohm effects on bound energies and scattering cross sections, but these cases have not been experimentally tested. An electric Aharonov–Bohm phenomenon was also predicted, in which a charged particle is affected by regions with different electrical potentials but zero electric field, but this has no experimental confirmation yet. A separate ""molecular"" Aharonov–Bohm effect was proposed for nuclear motion in multiply connected regions, but this has been argued to be a different kind of geometric phase as it is ""neither nonlocal nor topological"", depending only on local quantities along the nuclear path.Werner Ehrenberg and Raymond E. Siday first predicted the effect in 1949, and similar effects were later published by Yakir Aharonov and David Bohm in 1959. After publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday's work, which was acknowledged and credited in Bohm and Aharonov's subsequent 1961 paper.Subsequently, the effect was confirmed experimentally by several authors; a general review can be found in Peshkin and Tonomura (1989).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report