• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Lecture 1
Lecture 1

ASU Chain Reaction - Volume 2
ASU Chain Reaction - Volume 2

AH + B(-) A(
AH + B(-) A(

... o The terms in this equation are concentration. The molarity of water, [H2O] is 55 M or 55 moles/Liter o The acidity constant is ...
chemical thermodynamics
chemical thermodynamics

Dynamic van der Waals theory
Dynamic van der Waals theory

2 - MechFamily
2 - MechFamily

Understanding pV Diagrams and Calculating Work Done
Understanding pV Diagrams and Calculating Work Done

Electrical theory of thermodynamics and particle scale heat engines
Electrical theory of thermodynamics and particle scale heat engines

Atmospheric Thermodynamics
Atmospheric Thermodynamics

File
File

momentum the object has because it is spinning. (2) The other part
momentum the object has because it is spinning. (2) The other part

Document
Document

IntroTHT_2e_SM_Chap01
IntroTHT_2e_SM_Chap01

boltzmann`s entropy and time`s arrow
boltzmann`s entropy and time`s arrow

phys1441-120610
phys1441-120610

ExamView - Quiz 3--Heat and Thermo PRACTICE.tst
ExamView - Quiz 3--Heat and Thermo PRACTICE.tst

BOLTZMANN`S ENTROPY AND TIME`S ARROW
BOLTZMANN`S ENTROPY AND TIME`S ARROW

20 Entropy and the Second Law of Thermodynamics
20 Entropy and the Second Law of Thermodynamics

... confined by a closed stopcock to the left half of a thermally insulated container. If we open the stopcock, the gas rushes to fill the entire container, eventually reaching the final equilibrium state f shown in Fig. 20-1b. Unless the number of gas molecules is small (which is very hard to accomplis ...
Thermodynamic Cycles Knowledge Check
Thermodynamic Cycles Knowledge Check

Thermodynamic Cycles Knowledge Check
Thermodynamic Cycles Knowledge Check

Thermodynamic Cycles Knowledge Check
Thermodynamic Cycles Knowledge Check

Internal Energy Work Heat
Internal Energy Work Heat

... heat flows were allowed to occur it was recognised that in thermodynamic systems the concept of heat flow, Q was essential and that Q was just another form of energy. Heat flow like work however was a form of energy in transit. No body could be said to hold a quantity of work or heat, the two only ...
Title - ALevelChemistryRossett
Title - ALevelChemistryRossett

AH (SHM) - mrmackenzie
AH (SHM) - mrmackenzie

Thermodynamic Processes
Thermodynamic Processes

< 1 ... 6 7 8 9 10 11 12 13 14 ... 70 >

Thermodynamic system



A thermodynamic system is the content of a macroscopic volume in space, along with its walls and surroundings; it undergoes thermodynamic processes according to the principles of thermodynamics. A physical system qualifies as a thermodynamic system only if it can be adequately described by thermodynamic variables such as temperature, entropy, internal energy and pressure. The thermodynamic state of a thermodynamic system is its internal state as specified by its state variables. A thermodynamic account also requires a special kind of function called a state function. For example, if the state variables are internal energy, volume and mole amounts, the needed further state function is entropy. These quantities are inter-related by one or more functional relationships called equations of state. Thermodynamics defines the restrictions on the possible equations of state imposed by the laws of thermodynamics through that further function of state.The system is delimited by walls or boundaries, either actual or notional, across which conserved (such as matter and energy) or unconserved (such as entropy) quantities can pass into and out of the system. The space outside the thermodynamic system is known as the surroundings, a reservoir, or the environment. The properties of the walls determine what transfers can occur. A wall that allows transfer of a quantity is said to be permeable to it, and a thermodynamic system is classified by the permeabilities of its several walls. A transfer between system and surroundings can arise by contact, such as conduction of heat, or by long-range forces such as an electric field in the surroundings.A system with walls that prevent all transfers is said to be isolated. This is an idealized conception, because in practice some transfer is always possible, for example by gravitational forces. It is an axiom of thermodynamics that an isolated system eventually reaches internal thermodynamic equilibrium, when its state no longer changes with time. According to the permeabilities of its walls, a system that is not isolated can be in thermodynamic equilibrium with its surroundings, or else may be in a state that is constant or precisely cyclically changing in time - a steady state that is far from equilibrium. Classical thermodynamics considers only states of thermodynamic systems in equilibrium that are either constant or precisely cycling in time. The walls of a closed system allow transfer of energy as heat and as work, but not of matter, between it and its surroundings. The walls of an open system allow transfer both of matter and of energy. This scheme of definition of terms is not uniformly used, though it is convenient for some purposes. In particular, some writers use 'closed system' where 'isolated system' is here used.In 1824 Sadi Carnot described a thermodynamic system as the working substance (such as the volume of steam) of any heat engine under study. The very existence of such thermodynamic systems may be considered a fundamental postulate of equilibrium thermodynamics, though it is not listed as a numbered law. According to Bailyn, the commonly rehearsed statement of the zeroth law of thermodynamics is a consequence of this fundamental postulate.In equilibrium thermodynamics the state variables do not include fluxes because in a state of thermodynamic equilibrium all fluxes have zero values by definition. Equilibrium thermodynamic processes may of course involve fluxes but these must have ceased by the time a thermodynamic process or operation is complete bringing a system to its eventual thermodynamic state. Non-equilibrium thermodynamics allows its state variables to include non-zero fluxes, that describe transfers of matter or energy or entropy between a system and its surroundings.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report