• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Bilattices and the Semantics of Logic Programming
Bilattices and the Semantics of Logic Programming

... M. Ginsberg has invented the elegant notion of bilattice ([14], [15]), which deals with precisely this issue. We reserve the definition till later on, but for motivation we note: Belnap’s four valued logic constitutes the simplest bilattice; a natural bilattice can be constructed based on any ‘reaso ...
connections to higher type Recursion Theory, Proof-Theory
connections to higher type Recursion Theory, Proof-Theory

... Church's Thesis, provided that its use is not mathematically misleading. Namely, the philosophical point raised by the Thesis is surely crucial, but do we really need it when working out results ? In case a new system for general computations is proposed, it is then better to check carefully whether ...
Logic and Computation Lecture notes Jeremy Avigad Assistant Professor, Philosophy
Logic and Computation Lecture notes Jeremy Avigad Assistant Professor, Philosophy

What is "formal logic"?
What is "formal logic"?

An Introduction to Proof Theory - UCSD Mathematics
An Introduction to Proof Theory - UCSD Mathematics

... In practice, social proofs and formal proofs are very closely related. Firstly, a formal proof can serve as a social proof (although it may be very tedious and unintuitive) provided it is formalized in a proof system whose validity is trusted. Secondly, the standards for social proofs are sufficient ...
A Proof of Nominalism. An Exercise in Successful
A Proof of Nominalism. An Exercise in Successful

... with structures of particular concrete objects. Now for mathematicians’ deductions of theorems from axioms the interpretation of nonlogical primitives does not matter. In other words it does not matter what these objects are as long as they are particulars forming the right kind of structure. In th ...
Geometric Modal Logic
Geometric Modal Logic

... claims incomparably more than saying that this proposition is simply necessary. Speaking of something as ‘possibly possible’, we implicitly let the variation system itself vary, we shift from a given system of possibility into a frame inside which this system is only one among others, and we say tha ...
Logic Programming, Functional Programming, and Inductive
Logic Programming, Functional Programming, and Inductive

... Essentially, they develop the theory of inductive definitions so as to distinguish divergent computations from finite failures. Negation goes beyond monotone inductive definitions: with negated subgoals, the function φ above may not be monotone. However, perhaps the database can be partitioned into ...
Structural Proof Theory
Structural Proof Theory

HPL-2008 - HP Labs
HPL-2008 - HP Labs

Curry-Howard Isomorphism - Department of information engineering
Curry-Howard Isomorphism - Department of information engineering

preliminary version
preliminary version

Chapter 2
Chapter 2

... SOL: G.1 The student will construct and judge the validity of a logical argument consisting of a set of premises and a conclusion. This will include a) Identify the converse, inverse, & contrapositive of a conditional statement; b) Translating a short verbal argument into symbolic form; c) Using Ven ...
Proof Nets Sequentialisation In Multiplicative Linear Logic
Proof Nets Sequentialisation In Multiplicative Linear Logic

... The paper is divided into the following sections: – In section 1, after introducing some terminology about directed acyclic graphs we give some background on the syntax of multiplicative linear logic (MLL) and proof nets. We revise the notion of proof nets, in order to be able to add sequential edge ...
Lecture 25 (FM)
Lecture 25 (FM)

...  B says: “Two of us are opposite types.”  Determine the types of A and B..  Island Rule: Ahmad is a knight if what he said is true and Ali is a knight if what he said is true. Dr. Naveed Riaz ...
Master Thesis - Yoichi Hirai
Master Thesis - Yoichi Hirai

Symbolic Execution - Harvard University
Symbolic Execution - Harvard University

Definability in Boolean bunched logic
Definability in Boolean bunched logic

... Proof. In each case we build models M and M 0 such that there is a bounded morphism from M to M 0 , but M has the property ...
File
File

... pronouns for nouns in English grammar or multiple name substitution. Unfortunately, in most of the Mathematical writings (books or articles) the difference is not given explicity, the reader has to distinguish the name and object according to the context. This kind of catastrophic events occurs whil ...
Modal Logic for Artificial Intelligence
Modal Logic for Artificial Intelligence

... From the model-theoretic standpoint, we can understand what logical constants are: in propositional logic they are the ones that are entirely truth-functional. If we know what the truth value is of A and B, then we know what the truth value is of ‘A or B’, ‘not A’, and so on. Proof-theoretic approac ...
First-Order Logic with Dependent Types
First-Order Logic with Dependent Types

... objects with the respective type that do not contain any lambda abstractions except for those preceded by quantifiers. A context for a signature Σ is a sequence of typed variables x : Univ S, where previously declared variables and symbols declared in Σ may occur in S. Sorts, terms and formulas in c ...
Programming in Logic Without Logic Programming
Programming in Logic Without Logic Programming

what are we to accept, and what are we to reject
what are we to accept, and what are we to reject

Fuzzy logic and probability Institute of Computer Science (ICS
Fuzzy logic and probability Institute of Computer Science (ICS

... ing clear the basic differences. Admitting some simpli­ fication, we cotL'>ider that fuzzy logic is a logic of vague, imprecise notions and propositions, propositions that may be more or less true. Fuzzy logic is then a logic of partial degrees of truth. On the contrary, probabil­ ity deal'3 with cr ...
Chapter 2
Chapter 2

... For example, if the context is number theory, and we are asked to prove that the product of two even integers is also even, we can use knowledge about number theory. In particular, we could use the fact that an even integer is divisible by 2, or that an even integer m can be rewritten as 2k for some ...
< 1 ... 11 12 13 14 15 16 17 18 19 ... 57 >

Natural deduction

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the ""natural"" way of reasoning. This contrasts with the axiomatic systems which instead use axioms as much as possible to express the logical laws of deductive reasoning.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report