MAX16122–MAX16125 Dual Pushbutton Controllers in Tiny 6-Bump WLP Package General Description
... The MAX16124/MAX16125 have one manual reset input (MR), a reset output (RESET), and a soft reset output (SRESET) which mirrors the state of the input. The MAX16122/MAX16123 have two identical manual reset inputs (MR1 and MR2) and one reset output (RESET). A deglitch block is connected to each input ...
... The MAX16124/MAX16125 have one manual reset input (MR), a reset output (RESET), and a soft reset output (SRESET) which mirrors the state of the input. The MAX16122/MAX16123 have two identical manual reset inputs (MR1 and MR2) and one reset output (RESET). A deglitch block is connected to each input ...
MAX14595 Low-Power Dual-Channel Logic-Level Translator General Description EVALUATION KIT AVAILABLE
... The device features a three-state input that can put the device into high-impedance mode. When TS is low, IOVCC_ and IOVL_ are all high impedance and the internal pullup resistors are disconnected. When TS is high, the internal pullup resistors are connected when the corresponding power is in regula ...
... The device features a three-state input that can put the device into high-impedance mode. When TS is low, IOVCC_ and IOVL_ are all high impedance and the internal pullup resistors are disconnected. When TS is high, the internal pullup resistors are connected when the corresponding power is in regula ...
14-Output Clock Generator with Integrated 2.0 GHz VCO AD9516-3
... be reconfigured as two CMOS outputs. The LVPECL outputs operate to 1.6 GHz, the LVDS outputs operate to 800 MHz, and the CMOS outputs operate to 250 MHz. Each pair of outputs has dividers that allow both the divide ratio and coarse delay (or phase) to be set. The range of division for the LVPECL out ...
... be reconfigured as two CMOS outputs. The LVPECL outputs operate to 1.6 GHz, the LVDS outputs operate to 800 MHz, and the CMOS outputs operate to 250 MHz. Each pair of outputs has dividers that allow both the divide ratio and coarse delay (or phase) to be set. The range of division for the LVPECL out ...
74LVCV2G66 1. General description Overvoltage tolerant bilateral switch
... The 74LVCV2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device. The 74LVCV2G66 provides two single pole single throw analog or digital switches. Each switch includes an overvoltage tolerant input/output terminal (pin nZ), an output/input terminal (pin nY) and low-power active HIGH enable ...
... The 74LVCV2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device. The 74LVCV2G66 provides two single pole single throw analog or digital switches. Each switch includes an overvoltage tolerant input/output terminal (pin nZ), an output/input terminal (pin nY) and low-power active HIGH enable ...
74AVCH1T45 1. General description Dual-supply voltage level translator/transceiver; 3-state
... The 74AVCH1T45 is a single bit, dual supply transceiver that enables bidirectional level translation. It features two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can be supplied at any voltage between 0.8 V and ...
... The 74AVCH1T45 is a single bit, dual supply transceiver that enables bidirectional level translation. It features two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can be supplied at any voltage between 0.8 V and ...
Transistor–transistor logic
Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar junction transistors (BJT) and resistors. It is called transistor–transistor logic because both the logic gating function (e.g., AND) and the amplifying function are performed by transistors (contrast with RTL and DTL).TTL is notable for being a widespread integrated circuit (IC) family used in many applications such as computers, industrial controls, test equipment and instrumentation, consumer electronics, synthesizers, etc. The designation TTL is sometimes used to mean TTL-compatible logic levels, even when not associated directly with TTL integrated circuits, for example as a label on the inputs and outputs of electronic instruments.After their introduction in integrated circuit form in 1963 by Sylvania, TTL integrated circuits were manufactured by several semiconductor companies, with the 7400 series (also called 74xx) by Texas Instruments becoming particularly popular. TTL manufacturers offered a wide range of logic gate, flip-flops, counters, and other circuits. Several variations from the original bipolar TTL concept were developed, giving circuits with higher speed or lower power dissipation to allow optimization of a design. TTL circuits simplified design of systems compared to earlier logic families, offering superior speed to resistor–transistor logic (RTL) and easier design layout than emitter-coupled logic (ECL). The design of the input and outputs of TTL gates allowed many elements to be interconnected.TTL became the foundation of computers and other digital electronics. Even after much larger scale integrated circuits made multiple-circuit-board processors obsolete, TTL devices still found extensive use as the ""glue"" logic interfacing more densely integrated components. TTL devices were originally made in ceramic and plastic dual-in-line (DIP) packages, and flat-pack form. TTL chips are now also made in surface-mount packages. Successors to the original bipolar TTL logic often are interchangeable in function with the original circuits, but with improved speed or lower power dissipation.