
Bloomfield Prioritized CCSS Grades 9
... Extend the properties of exponents to rational exponents. CC.9-12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we de ...
... Extend the properties of exponents to rational exponents. CC.9-12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we de ...
Section 8.1 Solving Quadratic Equations A linear equation has the
... Objective 3: Solve quadratic equations by completing the square Solving ax 2 + bx + c = 0 , a 0 , by Completing the Square Step 1. If a 1 , divide both sides of the equation by a . Step 2. Move all constants to the right-hand side. Step 3. Find ½ times b (the coefficient of the x -term), square ...
... Objective 3: Solve quadratic equations by completing the square Solving ax 2 + bx + c = 0 , a 0 , by Completing the Square Step 1. If a 1 , divide both sides of the equation by a . Step 2. Move all constants to the right-hand side. Step 3. Find ½ times b (the coefficient of the x -term), square ...
BKL singularity
A BKL (Belinsky–Khalatnikov–Lifshitz) singularity is a model of the dynamic evolution of the Universe near the initial singularity, described by an anisotropic, homogeneous, chaotic solution to Einstein's field equations of gravitation. According to this model, the Universe is oscillating (expanding and contracting) around a singular point (singularity) in which time and space become equal to zero. This singularity is physically real in the sense that it is a necessary property of the solution, and will appear also in the exact solution of those equations. The singularity is not artificially created by the assumptions and simplifications made by the other well-known special solutions such as the Friedmann–Lemaître–Robertson–Walker, quasi-isotropic, and Kasner solutions.The Mixmaster universe is a solution to general relativity that exhibits properties similar to those discussed by BKL.