• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Generalized Linear Models - Statistics
Generalized Linear Models - Statistics

A Simple Estimator for Binary Choice Models With
A Simple Estimator for Binary Choice Models With

Chapter 8_Field_2005: Comparing several means: ANOVA
Chapter 8_Field_2005: Comparing several means: ANOVA

Can the Strengths of AIC and BIC Be Shared?
Can the Strengths of AIC and BIC Be Shared?

Multicollinearity
Multicollinearity

GRADIENT-BASED STRUCTURAL CHANGE DETECTION FOR
GRADIENT-BASED STRUCTURAL CHANGE DETECTION FOR

Modeling Linear Functions
Modeling Linear Functions

The Craft of Economic Modeling
The Craft of Economic Modeling

Sensitivity Analysis in Multiple Imputation for Missing
Sensitivity Analysis in Multiple Imputation for Missing

SPSS Regression 17.0
SPSS Regression 17.0

Computing Initial Values for Pharmacokinetic ML Nonlinear Regression via genetic algorithms and parallel genetic algorithms
Computing Initial Values for Pharmacokinetic ML Nonlinear Regression via genetic algorithms and parallel genetic algorithms

Fastest Isotonic Regression Algorithms
Fastest Isotonic Regression Algorithms

portable document (.pdf) format
portable document (.pdf) format

p - HKUST Business School
p - HKUST Business School

Multiple Regression - Berkeley Statistics
Multiple Regression - Berkeley Statistics

Introduction to Econometrics - San Francisco State University
Introduction to Econometrics - San Francisco State University

here - Wright State University
here - Wright State University

PDF
PDF

... derives weights from the propensity score, where these are defined by the inverse of the propensity score if the subject receives treatment and the inverse of 1 minus the propensity score if the subject receives the control. Any method that uses the propensity score requires that all relevant confoun ...
Congdon Talk Bayes Pharma
Congdon Talk Bayes Pharma

Chapter 19: Measurement Error and the
Chapter 19: Measurement Error and the

... Express the model in terms of annual income. c. What is the equation for the new error term? d. What are the ramifications of using the ordinary least squares (OLS) estimation procedure to estimate the permanent income coefficient, βIncPerm, using annual income as the explanatory variable? Introduct ...
Module 6 Statistics Review
Module 6 Statistics Review

Implementing a Customer Lifetime Value Framework in SAS
Implementing a Customer Lifetime Value Framework in SAS

(5.1 mmol/l) to 239 mg/dL
(5.1 mmol/l) to 239 mg/dL

Limited Dependent Variable Models I
Limited Dependent Variable Models I

Controlling Extraneous Variables
Controlling Extraneous Variables

< 1 ... 18 19 20 21 22 23 24 25 26 ... 98 >

Coefficient of determination



In statistics, the coefficient of determination, denoted R2 or r2 and pronounced R squared, is a number that indicates how well data fit a statistical model – sometimes simply a line or a curve. An R2 of 1 indicates that the regression line perfectly fits the data, while an R2 of 0 indicates that the line does not fit the data at all. This latter can be because the data is utterly non-linear, or because it is random.It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis of other related information. It provides a measure of how well observed outcomes are replicated by the model, as the proportion of total variation of outcomes explained by the model (pp. 187, 287).There are several definitions of R2 that are only sometimes equivalent. One class of such cases includes that of simple linear regression where r2 is used instead of R2. In this case, if an intercept is included, then r2 is simply the square of the sample correlation coefficient (i.e., r) between the outcomes and their predicted values. If additional explanators are included, R2 is the square of the coefficient of multiple correlation. In both such cases, the coefficient of determination ranges from 0 to 1.Important cases where the computational definition of R2 can yield negative values, depending on the definition used, arise where the predictions that are being compared to the corresponding outcomes have not been derived from a model-fitting procedure using those data, and where linear regression is conducted without including an intercept. Additionally, negative values of R2 may occur when fitting non-linear functions to data. In cases where negative values arise, the mean of the data provides a better fit to the outcomes than do the fitted function values, according to this particular criterion.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report