• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
1. (a)
1. (a)

Properties of the Real Numbers - Department of Physics
Properties of the Real Numbers - Department of Physics

Unit 1 Study Guide
Unit 1 Study Guide

Document
Document

Number Systems I - CIS008-2 Logic and Foundations of Mathematics
Number Systems I - CIS008-2 Logic and Foundations of Mathematics

NUMBER SYS LEC -1
NUMBER SYS LEC -1

Math 3345-Real Analysis — Lecture 01 8/31/05 1. What`s Real
Math 3345-Real Analysis — Lecture 01 8/31/05 1. What`s Real

... For the most part, I would say that real analysis is the study of the concepts needed to talk about differentiation and integration. Certainly, these concepts would include limits, continuity and distance, but more fundamentally, we need to understand the real numbers. The properties of the real num ...
Name Date Period ______ Study Guide for Absolute Value
Name Date Period ______ Study Guide for Absolute Value

... ABSOLUTE VALUE – the distance a number is from zero on the number line, represented by the symbol ...
integers balanced math
integers balanced math

Section 1.1 - GEOCITIES.ws
Section 1.1 - GEOCITIES.ws

Class Notes: 9/1/09 MAE 501 Distributed by: James Lynch Structure
Class Notes: 9/1/09 MAE 501 Distributed by: James Lynch Structure

prr, ba - The University of Texas at Dallas
prr, ba - The University of Texas at Dallas

Full text
Full text

Rational Numbers - Bourbon County Schools
Rational Numbers - Bourbon County Schools

Positive and Negative Numbers
Positive and Negative Numbers

1 Professor Carl Cowen Math 44500 Spring 11 `A` LIST PROBLEMS
1 Professor Carl Cowen Math 44500 Spring 11 `A` LIST PROBLEMS

real numbers
real numbers

How can you identify opposites and absolute values of rational
How can you identify opposites and absolute values of rational

Multiply/Divide Integers
Multiply/Divide Integers

basic math - TERRAMETRA Resources
basic math - TERRAMETRA Resources

Do Now 11/16/11
Do Now 11/16/11

Chapter 1 Reteaching
Chapter 1 Reteaching

Math for Developers
Math for Developers

Study Guide Review Study Guide Review
Study Guide Review Study Guide Review

... numbers. Euclid’s method for finding the GCF of 156 and 60 is shown below. No description of the steps is given, but the colors of the numbers should help you understand the method. • 156 ÷ 60 = 2, with a remainder of 36. • 60 ÷ 36 = 1, with a remainder of 24. • 36 ÷ 24 = 1, with a remainder of 12. ...
Study Guide Module 3
Study Guide Module 3

< 1 ... 32 33 34 35 36 37 38 39 40 ... 53 >

P-adic number



In mathematics the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of ""closeness"" or absolute value. In particular, p-adic numbers have the interesting property that they are said to be close when their difference is divisible by a high power of p – the higher the power the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.p-adic numbers were first described by Kurt Hensel in 1897, though with hindsight some of Kummer's earlier work can be interpreted as implicitly using p-adic numbers. The p-adic numbers were motivated primarily by an attempt to bring the ideas and techniques of power series methods into number theory. Their influence now extends far beyond this. For example, the field of p-adic analysis essentially provides an alternative form of calculus.More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational numbers. The field Qp is also given a topology derived from a metric, which is itself derived from the p-adic order, an alternative valuation on the rational numbers. This metric space is complete in the sense that every Cauchy sequence converges to a point in Qp. This is what allows the development of calculus on Qp, and it is the interaction of this analytic and algebraic structure which gives the p-adic number systems their power and utility.The p in p-adic is a variable and may be replaced with a prime (yielding, for instance, ""the 2-adic numbers"") or another placeholder variable (for expressions such as ""the ℓ-adic numbers""). The ""adic"" of ""p-adic"" comes from the ending found in words such as dyadic or triadic, and the p means a prime number.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report