• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Study Guide
Study Guide

Solutions to Problem Set #2
Solutions to Problem Set #2

Compare and Order Integers and Positive Rational Numbers
Compare and Order Integers and Positive Rational Numbers

Columbus State Community College
Columbus State Community College

... To write a negative number, put a negative sign (a dash) in front of it: –12. Notice that the negative sign looks exactly like the subtraction sign, as in 7 – 2 = 5. The negative sign and subtraction sign do not mean the same thing (more on that in the next section). To avoid confusion for now, we w ...
“When any two whole numbers are added we always get another
“When any two whole numbers are added we always get another

Unit 2 Notes Update
Unit 2 Notes Update

1.1 The Real Numbers
1.1 The Real Numbers

... Note that for 52, where the exponent is 2 and the base is 5, not 5. So that 52 means: 52 = (52), and is read as “the opposite of 5 to the second, or 5 squared.” ...
Math 103 Lecture 4 notes A Simple Problem: What is 2 more than 3
Math 103 Lecture 4 notes A Simple Problem: What is 2 more than 3

empty set
empty set

Chapter 2 Lesson 2 Adding Integers pgs. 64-68
Chapter 2 Lesson 2 Adding Integers pgs. 64-68

... but different signs • Additive Inverse (66): an integer and it’s opposite ...
Lecture 2: Section 1.2: Exponents and Radicals Positive Integer
Lecture 2: Section 1.2: Exponents and Radicals Positive Integer

... 16 = 4 because 42 = 16 and 4 > 0. For a real number a, and a positive integer n, we define a1/n in a similar way a1/n = b ...
Notes - Godley ISD
Notes - Godley ISD

MODULE 19 Topics: The number system and the complex numbers
MODULE 19 Topics: The number system and the complex numbers

... Between any two irrational numbers there is a rational number because we can approximate any irrational number by a rational number from above or below. Theorem: All the rational numbers on the interval [0, 1] can be covered with open intervals such that the sum of the length of these intervals is a ...
Linear independence of continued fractions
Linear independence of continued fractions

Math 3333: Fields, Ordering, Completeness and the Real Numbers
Math 3333: Fields, Ordering, Completeness and the Real Numbers

2 Numbers - Springer
2 Numbers - Springer

Operations with Integers 1.3
Operations with Integers 1.3

Slide 1
Slide 1

Integers - s3.amazonaws.com
Integers - s3.amazonaws.com

Real Numbers - shilepsky.net
Real Numbers - shilepsky.net

PDF
PDF

Scheme of work for Unit 3 Modular Exam (Number, Shape Space
Scheme of work for Unit 3 Modular Exam (Number, Shape Space

Numbers - Queen Mary University of London
Numbers - Queen Mary University of London

Topic for today: The irrational side of numbers How many rational
Topic for today: The irrational side of numbers How many rational

Topic for today: The irrational side of numbers How many rational
Topic for today: The irrational side of numbers How many rational

... A rational number x is one that can be written in the form x= ...
< 1 ... 26 27 28 29 30 31 32 33 34 ... 53 >

P-adic number



In mathematics the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of ""closeness"" or absolute value. In particular, p-adic numbers have the interesting property that they are said to be close when their difference is divisible by a high power of p – the higher the power the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.p-adic numbers were first described by Kurt Hensel in 1897, though with hindsight some of Kummer's earlier work can be interpreted as implicitly using p-adic numbers. The p-adic numbers were motivated primarily by an attempt to bring the ideas and techniques of power series methods into number theory. Their influence now extends far beyond this. For example, the field of p-adic analysis essentially provides an alternative form of calculus.More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational numbers. The field Qp is also given a topology derived from a metric, which is itself derived from the p-adic order, an alternative valuation on the rational numbers. This metric space is complete in the sense that every Cauchy sequence converges to a point in Qp. This is what allows the development of calculus on Qp, and it is the interaction of this analytic and algebraic structure which gives the p-adic number systems their power and utility.The p in p-adic is a variable and may be replaced with a prime (yielding, for instance, ""the 2-adic numbers"") or another placeholder variable (for expressions such as ""the ℓ-adic numbers""). The ""adic"" of ""p-adic"" comes from the ending found in words such as dyadic or triadic, and the p means a prime number.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report