
Fractions
... 5.NF.1: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/ ...
... 5.NF.1: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/ ...
Chapter4
... Representations of Integers • In the modern world, we use decimal, or base 10, notation to represent integers. For example when we write 965, we mean 9∙102 + 6∙101 + 5∙100 . • We can represent numbers using any base b, where b is a positive integer greater than 1. • The bases b = 2 (binary), b = 8 ...
... Representations of Integers • In the modern world, we use decimal, or base 10, notation to represent integers. For example when we write 965, we mean 9∙102 + 6∙101 + 5∙100 . • We can represent numbers using any base b, where b is a positive integer greater than 1. • The bases b = 2 (binary), b = 8 ...
Module 2 Pre-Algebra Activities Weeks
... You can only combine terms that are like terms. You think of it as the reverse of the distributive property. It is like counting apples and oranges. You just count up how many variables you have the same and write the number in front of the common variable part. ...
... You can only combine terms that are like terms. You think of it as the reverse of the distributive property. It is like counting apples and oranges. You just count up how many variables you have the same and write the number in front of the common variable part. ...
Teacher Booklet Shining Term 3 - Hamilton Secondary Numeracy
... neighbouring pair of prime numbers and discuss what they notice. They then add neighbouring pairs and discuss what they notice. Teacher input with whole class Take feedback on what pupils found. For example they may have discovered that other than the difference between 2 and 3, all differences ...
... neighbouring pair of prime numbers and discuss what they notice. They then add neighbouring pairs and discuss what they notice. Teacher input with whole class Take feedback on what pupils found. For example they may have discovered that other than the difference between 2 and 3, all differences ...
Addition
Addition (often signified by the plus symbol ""+"") is one of the four elementary, mathematical operations of arithmetic, with the others being subtraction, multiplication and division.The addition of two whole numbers is the total amount of those quantities combined. For example, in the picture on the right, there is a combination of three apples and two apples together; making a total of 5 apples. This observation is equivalent to the mathematical expression ""3 + 2 = 5"" i.e., ""3 add 2 is equal to 5"".Besides counting fruits, addition can also represent combining other physical objects. Using systematic generalizations, addition can also be defined on more abstract quantities, such as integers, rational numbers, real numbers and complex numbers and other abstract objects such as vectors and matrices.In arithmetic, rules for addition involving fractions and negative numbers have been devised amongst others. In algebra, addition is studied more abstractly.Addition has several important properties. It is commutative, meaning that order does not matter, and it is associative, meaning that when one adds more than two numbers, the order in which addition is performed does not matter (see Summation). Repeated addition of 1 is the same as counting; addition of 0 does not change a number. Addition also obeys predictable rules concerning related operations such as subtraction and multiplication.Performing addition is one of the simplest numerical tasks. Addition of very small numbers is accessible to toddlers; the most basic task, 1 + 1, can be performed by infants as young as five months and even some non-human animals. In primary education, students are taught to add numbers in the decimal system, starting with single digits and progressively tackling more difficult problems. Mechanical aids range from the ancient abacus to the modern computer, where research on the most efficient implementations of addition continues to this day.