• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Slides Chapter 3. Laws of large numbers
Slides Chapter 3. Laws of large numbers

Geometry  Name:_______________________ Unit 3 Test Review
Geometry Name:_______________________ Unit 3 Test Review

Full text
Full text

flowchart I use to organize my proof unit
flowchart I use to organize my proof unit

... examples are included. There are also blank templates so that you can set up your own examples while keeping a consistent structure for your students. If you like this structure, you may also want to check out the full Proof Unit that is available for sale in my store. It is filled with printables, ...
Mathematical Induction - Singapore Mathematical Society
Mathematical Induction - Singapore Mathematical Society

... called Pascal's Triangle. The first is a Chinese version copied from a diagram that appeared in the Ssu-yii.an yii.-chien (Precious Mirror of the Four Elements) by Chu Shih-chieh in 1303. Chu disclaims credit for the triangle and it seems likely that it originated in China about 1100. Note the use o ...
Idiosynchromatic Poetry
Idiosynchromatic Poetry

Review Packet
Review Packet

Lecture #10: Continuity of Probability
Lecture #10: Continuity of Probability

Section 3.1 Beyond Numbers What Does Infinity Mean?
Section 3.1 Beyond Numbers What Does Infinity Mean?

Section 2.4 1 Definition of a Limit 2 The Absolute Value Function
Section 2.4 1 Definition of a Limit 2 The Absolute Value Function

File
File

Density of the Rationals and Irrationals in R
Density of the Rationals and Irrationals in R

... Proof. This theorem is usually taken for granted (“as an axiom”) in most math classes. You can prove it, though. See the book ”Classical Set Theory for Guided Self Study” by Derek Goldrei (which is delightful) for a thorough explanation. Theorem 2. Let Y ⊂ R be bounded from above, and let x ∈ R an u ...
PLANE GEOMETRY 2 (In the line of Elements, ignoring definitions
PLANE GEOMETRY 2 (In the line of Elements, ignoring definitions

PDF
PDF

ASSIGNMENT 9 – SIMILAR TRIANGLES
ASSIGNMENT 9 – SIMILAR TRIANGLES

More about Permutations and Symmetry Groups
More about Permutations and Symmetry Groups

... the sense that it is possible to rotate any vertex to any other vertex. We can turn this into a definition. ...
Solutions 8  - MIT OpenCourseWare
Solutions 8 - MIT OpenCourseWare

... possibilities. Once we have fixed these choices, there are exactly two possibilities for the second cycle – it must visit the vertices in an order which skips every other vertex relative to the first, and it can do so in one of two directions relative to the first (once we fix the orientation of the ...
THE RAMSEY NUMBERS OF LARGE CYCLES VERSUS SMALL
THE RAMSEY NUMBERS OF LARGE CYCLES VERSUS SMALL

In Class Slides
In Class Slides

File
File

Solutions for final exam practice problems File
Solutions for final exam practice problems File

A B
A B

Rentel Lesson 5.5 Inequalities in Triangles - Mustang-Math
Rentel Lesson 5.5 Inequalities in Triangles - Mustang-Math

ON PATH-SUNFLOWER RAMSEY NUMBERS
ON PATH-SUNFLOWER RAMSEY NUMBERS

The Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra

< 1 ... 141 142 143 144 145 146 147 148 149 ... 153 >

Four color theorem



In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. Two regions are called adjacent if they share a common boundary that is not a corner, where corners are the points shared by three or more regions. For example, in the map of the United States of America, Utah and Arizona are adjacent, but Utah and New Mexico, which only share a point that also belongs to Arizona and Colorado, are not.Despite the motivation from coloring political maps of countries, the theorem is not of particular interest to mapmakers. According to an article by the math historian Kenneth May (Wilson 2014, 2), “Maps utilizing only four colors are rare, and those that do usually require only three. Books on cartography and the history of mapmaking do not mention the four-color property.”Three colors are adequate for simpler maps, but an additional fourth color is required for some maps, such as a map in which one region is surrounded by an odd number of other regions that touch each other in a cycle. The five color theorem, which has a short elementary proof, states that five colors suffice to color a map and was proven in the late 19th century (Heawood 1890); however, proving that four colors suffice turned out to be significantly harder. A number of false proofs and false counterexamples have appeared since the first statement of the four color theorem in 1852.The four color theorem was proven in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem. (If they did appear, you could make a smaller counter-example.) Appel and Haken used a special-purpose computer program to confirm that each of these maps had this property. Additionally, any map that could potentially be a counterexample must have a portion that looks like one of these 1,936 maps. Showing this required hundreds of pages of hand analysis. Appel and Haken concluded that no smallest counterexamples exist because any must contain, yet do not contain, one of these 1,936 maps. This contradiction means there are no counterexamples at all and that the theorem is therefore true. Initially, their proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand (Swart 1980). Since then the proof has gained wider acceptance, although doubts remain (Wilson 2014, 216–222).To dispel remaining doubt about the Appel–Haken proof, a simpler proof using the same ideas and still relying on computers was published in 1997 by Robertson, Sanders, Seymour, and Thomas. Additionally in 2005, the theorem was proven by Georges Gonthier with general purpose theorem proving software.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report