
doc
... When the molecules of a solid exhibit paramagnetism as a result of unpaired electron spins, transitions can be induced between spin states by applying a magnetic field and then supplying electromagnetic energy, usually in the microwave range of frequencies. The resulting absorption spectra are descr ...
... When the molecules of a solid exhibit paramagnetism as a result of unpaired electron spins, transitions can be induced between spin states by applying a magnetic field and then supplying electromagnetic energy, usually in the microwave range of frequencies. The resulting absorption spectra are descr ...
Magnetic Evidence for Seafloor Spreading Quiz
... a) Rocks are younger closer to the ridge b) The crust is thinner near the ridge c) The magnetic stripes are the same on both sides of the ridge d) All of the above are true ...
... a) Rocks are younger closer to the ridge b) The crust is thinner near the ridge c) The magnetic stripes are the same on both sides of the ridge d) All of the above are true ...
Lecture 8: Mirror / tokamak
... Flux in the iron core cannot be increased forever. The tokamak is necessarily a pulsed machine That is not good for energy production Also thermal stresses are associated with the pulsed character One can either: live with it / drive current another way / use a different concept ...
... Flux in the iron core cannot be increased forever. The tokamak is necessarily a pulsed machine That is not good for energy production Also thermal stresses are associated with the pulsed character One can either: live with it / drive current another way / use a different concept ...
Small-scale Magnetic Field Diagnostics outside Sunspots
... H(5250) = H(5247) and γ (5250) = γ (5247). This is the idea (firstly proposed by Lozitska & Lozitsky (1994)) behind the line-ratio technique. On the base of such study of the Stokes V peak peculiarities, the small-scale structure of the solar flares was investigated (Lozitsky et al. 1999, 2000). Bel ...
... H(5250) = H(5247) and γ (5250) = γ (5247). This is the idea (firstly proposed by Lozitska & Lozitsky (1994)) behind the line-ratio technique. On the base of such study of the Stokes V peak peculiarities, the small-scale structure of the solar flares was investigated (Lozitsky et al. 1999, 2000). Bel ...
360 Degree Angle Sensor Using Spin Valve
... easier to energize the two half-bridges by using a single supply of either constant current or voltage, as shown in Figure 3 (b). However, the two outputs are taken out separately, rather than as a differential of the two nodes usually used for a full bridge. The final angle sensor is packaged into ...
... easier to energize the two half-bridges by using a single supply of either constant current or voltage, as shown in Figure 3 (b). However, the two outputs are taken out separately, rather than as a differential of the two nodes usually used for a full bridge. The final angle sensor is packaged into ...
Chapter 27 Magnetism
... the torque on a current loop to measure current; the spring constant is calibrated so the scale reads in amperes. ...
... the torque on a current loop to measure current; the spring constant is calibrated so the scale reads in amperes. ...
Space Plasma Physics
... • Suitable boundary conditions are derived from measurements of the photospheric field vector. - Bn and Jn for positive or negative polarity on boundary (Grad-Rubin) - Magnetic field vector Bx By Bz on boundary (Magnetofrictional, Optimization) ...
... • Suitable boundary conditions are derived from measurements of the photospheric field vector. - Bn and Jn for positive or negative polarity on boundary (Grad-Rubin) - Magnetic field vector Bx By Bz on boundary (Magnetofrictional, Optimization) ...
Magnets and Magnetism
... The magnetic field of the earth. The magnetic field surrounding the earth is produced by convection currents in the outer core of the earth in combination with the rotation of the earth. The shape of the field, however, is very much like that of a bar magnet, and so one can imagine a bar magnet in t ...
... The magnetic field of the earth. The magnetic field surrounding the earth is produced by convection currents in the outer core of the earth in combination with the rotation of the earth. The shape of the field, however, is very much like that of a bar magnet, and so one can imagine a bar magnet in t ...
Document
... The magnetic field of the earth. The magnetic field surrounding the earth is produced by convection currents in the outer core of the earth in combination with the rotation of the earth. The shape of the field, however, is very much like that of a bar magnet, and so one can imagine a bar magnet in t ...
... The magnetic field of the earth. The magnetic field surrounding the earth is produced by convection currents in the outer core of the earth in combination with the rotation of the earth. The shape of the field, however, is very much like that of a bar magnet, and so one can imagine a bar magnet in t ...
script
... In H2 one can explicitly compute the energy of both states (here denoted with t for triplet, S = 1 and s for singlet, S = 0) using the Heitler-London method: Et ≈ 2E1s + Q − J Es ≈ 2E1s + Q + J Q (Coulomb integral ) contains all Coulomb energies (electrons with the nuclei, Coulomb interaction of the ...
... In H2 one can explicitly compute the energy of both states (here denoted with t for triplet, S = 1 and s for singlet, S = 0) using the Heitler-London method: Et ≈ 2E1s + Q − J Es ≈ 2E1s + Q + J Q (Coulomb integral ) contains all Coulomb energies (electrons with the nuclei, Coulomb interaction of the ...
Magnetometer

Magnetometers are measurement instruments used for two general purposes: to measure the magnetization of a magnetic material like a ferromagnet, or to measure the strength and, in some cases, the direction of the magnetic field at a point in space.The first magnetometer was invented by Carl Friedrich Gauss in 1833 and notable developments in the 19th century included the Hall Effect which is still widely used.Magnetometers are widely used for measuring the Earth's magnetic field and in geophysical surveys to detect magnetic anomalies of various types. They are also used militarily to detect submarines. Consequently, some countries, such as the USA, Canada and Australia classify the more sensitive magnetometers as military technology, and control their distribution.Magnetometers can be used as metal detectors: they can detect only magnetic (ferrous) metals, but can detect such metals at a much larger depth than conventional metal detectors; they are capable of detecting large objects, such as cars, at tens of metres, while a metal detector's range is rarely more than 2 metres.In recent years magnetometers have been miniaturized to the extent that they can be incorporated in integrated circuits at very low cost and are finding increasing use as compasses in consumer devices such as mobile phones and tablet computers.