• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Available online through www.ijma.info ISSN 2229 – 5046
Available online through www.ijma.info ISSN 2229 – 5046

Characterizations of s-closed Hausdorff spaces
Characterizations of s-closed Hausdorff spaces

Part II
Part II

Two papers in categorical topology
Two papers in categorical topology

A few results about topological types
A few results about topological types

4. Compactness
4. Compactness

SAM III General Topology
SAM III General Topology

preopen sets and resolvable spaces
preopen sets and resolvable spaces

1.3 Equivalent Formulations of Lebesgue Measurability
1.3 Equivalent Formulations of Lebesgue Measurability

3. Geometric Notions
3. Geometric Notions

... general topological space, convergence of a sequence can be very strange. For example, consider the following topology on a nonempty set X: Let x0 ∈ X be chosen once and for all. Define TIP = {∅ or U ⊂ X with x0 ∈ U }. This set of subsets determines a topology on X called the included point topology ...
THE a-CLOSURE al OF A TOPOLOGICAL SPACE X
THE a-CLOSURE al OF A TOPOLOGICAL SPACE X

1. Introduction - Mathematica Bohemica
1. Introduction - Mathematica Bohemica

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 4 401
TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 4 401

II.1 Separation Axioms
II.1 Separation Axioms

... is an embedding. 명제 2 X is a Hausdorff space if and only if the diagonal ∆ = {(x, x) | x ∈ X} is closed in X × X. 증명 X is Hausdorff. ⇔ ∀(x, y) ∈ 4c , ∃ Open neighborhoods Ux , Uy of x and y s.t. Ux × Uy ⊂ 4c . ⇔ 4c is open in X × X. ⇔ 4 is closed in X × X. 명제 3 Suppose that X is Hausdorff, then the ...
A note on the precompactness of weakly almost periodic groups
A note on the precompactness of weakly almost periodic groups

ON b - δ - OPEN SETS IN TOPOLOGICAL SPACES
ON b - δ - OPEN SETS IN TOPOLOGICAL SPACES

T0 Topological Spaces
T0 Topological Spaces

MA5209L4 - Maths, NUS - National University of Singapore
MA5209L4 - Maths, NUS - National University of Singapore

... A category C consists of the following three mathematical entities: •A class ob(C), whose elements are called objects; •A class hom(C), whose elements are called morphisms or maps or arrows. Each morphism f has a unique source object a and target object b. We write f: a → b, and we say "f is a morph ...
Solutions Sheet 3
Solutions Sheet 3

General Topology
General Topology

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A — Part 4
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A — Part 4

properties transfer between topologies on function spaces
properties transfer between topologies on function spaces

SEMI-GENERALIZED CONTINUOUS MAPS IN TOPOLOGICAL
SEMI-GENERALIZED CONTINUOUS MAPS IN TOPOLOGICAL

Topological Spaces
Topological Spaces

Catalogue of Useful Topological Vectorspaces
Catalogue of Useful Topological Vectorspaces

... The space D of test functions on Rn is the collection of all compactly-supported smooth (i.e., infinitelydifferentiable) functions on Rn . It is the direct limit (ascending union) of the Frechet spaces DK of smooth functions with support in a given compact set K. It is locally convex, but not metriz ...
< 1 ... 66 67 68 69 70 71 72 73 74 ... 109 >

General topology



In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points. Compact sets are those that can be covered by finitely many sets of arbitrarily small size. Connected sets are sets that cannot be divided into two pieces that are far apart. The words 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using open sets, as described below. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space.Metric spaces are an important class of topological spaces where distances can be assigned a number called a metric. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report