• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
4 - Wsfcs
4 - Wsfcs

Special angles Sentry theorem
Special angles Sentry theorem

The sum of its interior angles is 180(n – 2). The sum of the exterior
The sum of its interior angles is 180(n – 2). The sum of the exterior

II. Geometry and Measurement - UW
II. Geometry and Measurement - UW

G.2 - DPS ARE
G.2 - DPS ARE

Geometry Triangle Congruence Criteria Unit CO.8 OBJECTIVE #: G
Geometry Triangle Congruence Criteria Unit CO.8 OBJECTIVE #: G

Topic 12 Vocabulary p.2 point
Topic 12 Vocabulary p.2 point

Topic 1 - Dr Frost Maths
Topic 1 - Dr Frost Maths

Section 1-6 -Triangle
Section 1-6 -Triangle

... Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point that divides a segment into two congruent segments. Definition of Angle Bisector: The ray that divides an angle into two congruent angles. Definition of Perpe ...
Doc
Doc

Sec 1.6 CC Geometry – Triangle Proofs Name:
Sec 1.6 CC Geometry – Triangle Proofs Name:

Geometrical Constructions
Geometrical Constructions

Geometry basics: Polygons
Geometry basics: Polygons

For SAS - mckinnon2210
For SAS - mckinnon2210

Triangle Inequality (third side)
Triangle Inequality (third side)

... In addition to exhibiting Score 3.0 performance, in-depth inferences and applications that go BEYOND what was taught in class. Score 4.0 does not equate to more work but rather a higher level of performance. ...
CK-12 Geometry: Isosceles and Equilateral Triangles Learning
CK-12 Geometry: Isosceles and Equilateral Triangles Learning

GEOMETRY
GEOMETRY

Reteach 7-3 - cloudfront.net
Reteach 7-3 - cloudfront.net

Warm-Up Exercises
Warm-Up Exercises

Law of Cosines and Area
Law of Cosines and Area

Geometry – Chapter 2
Geometry – Chapter 2

Document
Document

Math EOG Study Guide
Math EOG Study Guide

Angles and triangles.notebook
Angles and triangles.notebook

Date
Date

< 1 ... 34 35 36 37 38 39 40 41 42 ... 164 >

Reuleaux triangle



A Reuleaux triangle [ʁœlo] is a shape formed from the intersection of three circular disks, each having its center on the boundary of the other two. It is a curve of constant width, the simplest and best known such curve other than the circle itself. Constant width means that the separation of every two parallel supporting lines is the same, independent of their orientation. Because all its diameters are the same, the Reuleaux triangle is one answer to the question ""Other than a circle, what shape can a manhole cover be made so that it cannot fall down through the hole?""Reuleaux triangles have also been called spherical triangles, but that term more properly refers to triangles on the curved surface of a sphere.The name of Reuleaux triangles derives from Franz Reuleaux, a 19th-century German engineer who pioneered the study of machines for translating one type of motion into another, and who used Reuleaux triangles in his designs. However, these shapes were known before his time, for instance by the designers of Gothic church windows, by Leonardo da Vinci, who used it for a map projection, and by Leonhard Euler in his study of constant-width shapes. Other applications of the Reuleaux triangle include giving the shape to guitar picks, pencils, and drill bits for drilling square holes, as well as in graphic design in the shapes of some signs and corporate logos.Among constant-width shapes with a given width, the Reuleaux triangle has the minimum area and the sharpest possible angle (120°) at its corners. By several numerical measures it is the farthest from being centrally symmetric. It provides the largest constant-width shape avoiding the points of an integer lattice, and is closely related to the shape of the quadrilateral maximizing the ratio of perimeter to diameter. It can perform a complete rotation within a square while at all times touching all four sides of the square, and has the smallest possible area of shapes with this property. However, although it covers most of the square in this rotation process, it fails to cover a small fraction of the square's area, near its corners. Because of this property of rotating within a square, the Reuleaux triangle is also sometimes known as the Reuleaux rotor.The Reuleaux triangle is the first of a sequence of Reuleaux polygons, curves of constant width formed from regular polygons with an odd number of sides. Some of these curves have been used as the shapes of coins. The Reuleaux triangle can also be generalized into three dimensions in multiple ways: the Reuleaux tetrahedron (the intersection of four spheres whose centers lie on a regular tetrahedron) does not have constant width, but can be modified by rounding its edges to form the Meissner tetrahedron, which does. Alternatively, the surface of revolution of the Reuleaux triangle also has constant width.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report