
MONTH (Teacher would insert the month they are mapping)
... B.1 Identify and define reflection, line of reflection, and lines of symmetry B.2 Give coordinates of an image under reflection C.1 Identify and define rotation, center of rotation, angle of rotation, and rotational symmetry C.2 Identify a rotation as equivalent to reflections over two intersecting ...
... B.1 Identify and define reflection, line of reflection, and lines of symmetry B.2 Give coordinates of an image under reflection C.1 Identify and define rotation, center of rotation, angle of rotation, and rotational symmetry C.2 Identify a rotation as equivalent to reflections over two intersecting ...
bcsm curriculum map
... G.G.2 Know and apply that through a given point there passes one and only one plane perpendicular to a given line G.G.3 Know and apply that through a given point there passes one and only one line perpendicular to a given plane G.G.4 Know and apply that two lines perpendicular to the same plane are ...
... G.G.2 Know and apply that through a given point there passes one and only one plane perpendicular to a given line G.G.3 Know and apply that through a given point there passes one and only one line perpendicular to a given plane G.G.4 Know and apply that two lines perpendicular to the same plane are ...
Corresponding angles and corresponding sides are congruent in
... Unit 4: Congruence and Triangles (4.2) p.202211 Congruent Triangles:2 triangles that are exactly the same, both equal in length and equal in angle measure ...
... Unit 4: Congruence and Triangles (4.2) p.202211 Congruent Triangles:2 triangles that are exactly the same, both equal in length and equal in angle measure ...
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body. To describe such an orientation in 3-dimensional Euclidean space three parameters are required. They can be given in several ways, Euler angles being one of them; see charts on SO(3) for others. Euler angles are also used to describe the orientation of a frame of reference (typically, a coordinate system or basis) relative to another. They are typically denoted as α, β, γ, or φ, θ, ψ.Euler angles represent a sequence of three elemental rotations, i.e. rotations about the axes of a coordinate system. For instance, a first rotation about z by an angle α, a second rotation about x by an angle β, and a last rotation again about z, by an angle γ. These rotations start from a known standard orientation. In physics, this standard initial orientation is typically represented by a motionless (fixed, global, or world) coordinate system; in linear algebra, by a standard basis.Any orientation can be achieved by composing three elemental rotations. The elemental rotations can either occur about the axes of the fixed coordinate system (extrinsic rotations) or about the axes of a rotating coordinate system, which is initially aligned with the fixed one, and modifies its orientation after each elemental rotation (intrinsic rotations). The rotating coordinate system may be imagined to be rigidly attached to a rigid body. In this case, it is sometimes called a local coordinate system. Without considering the possibility of using two different conventions for the definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible sequences of rotation axes, divided in two groups: Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z). Tait–Bryan angles are also called Cardan angles; nautical angles; heading, elevation, and bank; or yaw, pitch, and roll. Sometimes, both kinds of sequences are called ""Euler angles"". In that case, the sequences of the first group are called proper or classic Euler angles.