
Week 9 Chapter 10 Section 1-5
... There is an analogy between the kinetic energies associated with linear motion (K = ½ mv 2) and the kinetic energy associated with rotational motion (KR= ½ I2) Rotational kinetic energy is not a new type of energy, the form is different because it is applied to a rotating object The units of rotati ...
... There is an analogy between the kinetic energies associated with linear motion (K = ½ mv 2) and the kinetic energy associated with rotational motion (KR= ½ I2) Rotational kinetic energy is not a new type of energy, the form is different because it is applied to a rotating object The units of rotati ...
2053_Lecture_10-08-13
... as shown in the figure. The cannon can fires a 100-kg cannon ball at a muzzle speed of 150 m/s at an angle of q above the horizontal as shown in the figure. The cannon plus railway car have a mass of 5,000 kg. If the cannon and one cannon ball are travelling to the right on the railway car a speed o ...
... as shown in the figure. The cannon can fires a 100-kg cannon ball at a muzzle speed of 150 m/s at an angle of q above the horizontal as shown in the figure. The cannon plus railway car have a mass of 5,000 kg. If the cannon and one cannon ball are travelling to the right on the railway car a speed o ...
Rotational Motion Notes
... zero resulting torque. The distance from the axis of rotation is an important measurement when calculating torque. It is instructive to measure the relative forces required to open a door by pulling with a spring balance firstly at the handle and then pulling in the middle of the door. Another examp ...
... zero resulting torque. The distance from the axis of rotation is an important measurement when calculating torque. It is instructive to measure the relative forces required to open a door by pulling with a spring balance firstly at the handle and then pulling in the middle of the door. Another examp ...
Q3 Lab Physics Study Guide
... _____ 20. When two ice skaters initially at rest push off one another, their final momenta are a. equal in magnitude and direction. b. equal in magnitude and opposite in direction. c. in the same direction but of different magnitudes d. in opposite directions and possibly of different magnitudes. __ ...
... _____ 20. When two ice skaters initially at rest push off one another, their final momenta are a. equal in magnitude and direction. b. equal in magnitude and opposite in direction. c. in the same direction but of different magnitudes d. in opposite directions and possibly of different magnitudes. __ ...